

European application engineeri	ng
LABORATORY TEST REPORT	March 3 rd , 2025 Page 1 / 36
ATR 4756 – MOC2312 Scapa 250	rage 17 co
FORD ES-KU5T-1A303-AA	

1. OBJECTIVE

As part of the MOC 2312 comparative test according to FORD ES-KU5T-1A303-AA specification of the 250 standard vs 250 coated in Valence.

2. TEST PARTS

Product reference: 250Manufacturer: Scapa

Batch number: 250 batch 1894341 / 250 batch PI2312

Temperature class: -40°C to 150°C
Backing material: Aluminized glass cloth

• Adhesive type: Silicone

Colour: SilverSizes: 19mm

• Part identification: **ES-KU5T-1A303-AA (D1R-10)**

Thickness: 0.200mm
Weight: 224gm²
Roll diameter: 89mm

3. TEST METHODS USED: FORD ES-KU5T-1A303-AA Let H March 2023

4. TEST CONDITIONS: 23 ± 2 °C, and 50 ± 5 % of relative humidity. (Unless otherwise specified)

5. PERSONN IN CHARGE OF TEST AND FUNCTION Pierre Tissot, Senior Testing Specialist - Automotive

6 OBSERVATION

Evaluations were done in principle on the test parts. An analysis using the images of the test report is not possible, as by various external influences a distortion of the photographic documentation could be. (e.g. exposure, illumination, print settings, ...).

Deviations from operating procedures are indicated in italics highlighted in grey.

7 RESULTS

7.1 LEGEND

Test passed
Test carried out (Requirement to be defined)
Test failed
Test result has to be interpreted
Not tested
No test required according to this standard

LABORATORY TEST REPORT

March 3rd, 2025 Page 2 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

7.2 MATRIX OF TEST

		R		Result		Resu	sult	
Tests	Section	Unit	Requirement	250 standard	250 PI 2312	Page		
TAPE REQUIREMENTS - PHYSI	TAPE REQUIREMENTS - PHYSICAL PROPERTIES					•		
Tensile strength	5	N/cm	>115	196.8	195.8	3		
Elongation	5	%	<10	6.9	7.3	3		
Adhesion on steel	5	N/cm	≥2,0	5.4	5.0	4		
Adhesion on backing	5	N/cm	≥2,0	4.9	4.6	5		
PERFORMANCE REQUIREMENTS	- BUNDLIN	G PERFORMA	NCE AND MATERIA	L COMPATIBILITY	•			
Initial testing	7.3.1	/	No cracking or flagging.	Comply	Comply	6		
Environmental cycling	7.3.2		C			7-8		
Tyco Raychem ACW0219			See protocol	Comply	Comply	/-ð		
Heat ageing 3000h at 150°C	7.3.3							
Tyco Raychem ACW0219			See protocol	Comply Class D	Comply Class D	9-13		
Thermal overload 6h at 200°C	7.3.4		See protocol			14-15		
Tyco Raychem ACW0219			See protocor	Comply	Comply	14-15		
Material compatibility	7.3.5					16 to 22		
Environmental cycling								
Tyco Raychem ACW0219			See protocol	Comply	Comply	17		
Heat ageing 3000h at 150°C								
Tyco Raychem ACW0219			See protocol	Comply	Comply	18-21		
Thermal overload 6h at 200°C			_					
Tyco Raychem ACW0219			See protocol	Comply	Comply	22		
Fluid resistance	7.4		See protocol	Compliant on all fluids	Compliant on all fluids	23 to 26		
Cold flexibility 4h at -40°C	7.5		No cracking or degradation.	Comply	Comply	27-28		
Fogging	7.6	%	>20	100	99	29		
Flammability	7.7	mm/min	≤100	0	0	30-31		
Odor rating	7.8	Class	≤2			32		
Reserved	7.9							
Noise dampening	7.10	dB Class	Class 1	2.1 Class 1	2.4 Class 1	33		
Abrasion resistance	7.11	Cycles Class	Class 0	Class 0	Class 0	34		
Thermal effectiveness	7.12	°C	Se at 121°C	Not tested	Not tested			
			Se at 260°C	Not tested	Not tested	35 to 36		
			Se at 482°C	93.3	89.3			
Dielectric performance	7.13	/	N/A					
Tape color	8.1	/	Silver	Sil	ver	36		

European application engineering LABORATORY TEST REPORT ATR 4756 – MOC2312 Scapa 250 March 3rd, 2025 Page 3 / 36

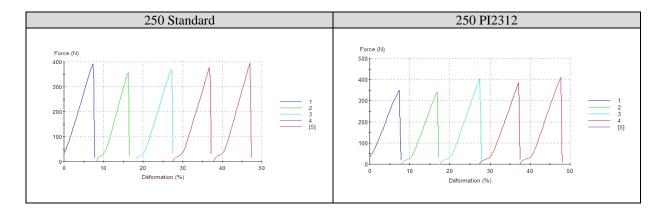
FORD ES-KU5T-1A303-AA

5 Tape requirements

5.1 Tensile strength and elongation

Apparatus

Dynamometer MTS 2/M with sensor 1KN

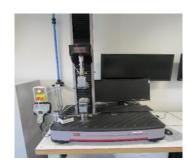

Procedure

ASTM D1000 (300mm/min; 100mm between jaws)

Requirement

Tensile strength: Scapa requirement approved Ford > 115N/cm Elongation: Scapa requirement approved Ford < 10%

Roll	250 Standard	250 Pl2312	Approval	250 Standard	250 Pl2312	Approval
		strength I/cm)		-	gation %)	
1	205.3	179.7		7.3	7.4	
2	182.8	175.4		6.3	6.7	
3	191.6	210.2		7.3	7.5	
4	199.8	198.1		6.7	7.1	
5	204.5	215.7	COMPLY	7.0	7.7	COMPLY
Min	182.8	175.4		6.3	6.7	
Max	205.3	215.7		7.3	7.7	
Mean	196.8	195.8		6.9	7.3	

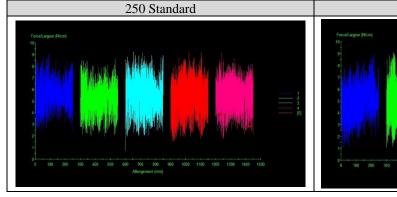

European application engineering	ng
I A DODATODY TECT DEPORT	March 3 rd , 2025
LABORATORY TEST REPORT	Page 4 / 36
ATR 4756 – MOC2312 Scapa 250	
FORD ES-KU5T-1A303-AA	

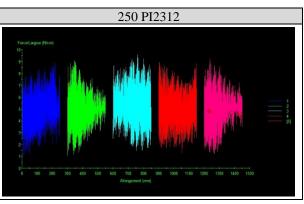
5.2 Adhesion on steel

Apparatus

Dynamometer MTS C42.503E $n^{\circ}1448$ with sensor 100N n° 1449 Automatic applicator rolls

Stainless steel type 304 with final bright annealing treatment and surface roughness of 50 nm \pm 25 nm.


Procedure


ASTM D1000 Test after 20min at 23°C, at 180°, 300mm/min

Requirement

Adhesion on steel: Scapa requirement approved Ford ≥2.0N/cm

Roll	250 Standard	Approval	250 PI2312	Approval
	N/cm		N/cm	
1	5.6		5.0	
2	5.2		4.9	
3	5.5		5.3	
4	5.5		4.8	
5	5.4	Comply	5.0	Comply
Min	5.2		4.8	
Max	5.6		5.3	
Mean	5.4		5.0	

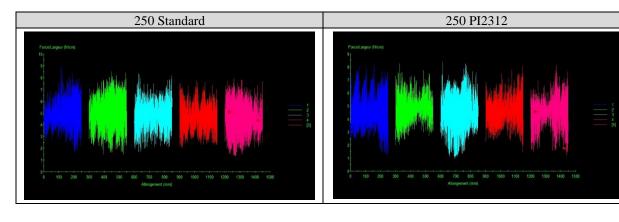
European application engineering			
I ADODATODY TEST DEDODT	March 3 rd , 2025		
LABORATORY TEST REPORT	Page 5 / 36		
ATR 4756 – MOC2312 Scapa 250			
FORD ES-KU5T-1A303-AA			

5.3 Adhesion on Backing

Apparatus

Dynamometer MTS C42.503E $n^{\circ}1448$ with sensor 100N n° 1449 Automatic applicator rolls

Stainless steel type 304 with final bright annealing treatment and surface roughness of 50 nm \pm 25 nm.


Procedure

ASTM D1000 Test after 20min at 23°C, at 180°, 300mm/min

Requirement

Adhesion on steel: Scapa requirement approved Ford ≥2.0N/cm

Roll	250 Standard	Approval	250 PI2312	Approval
	N/cm		N/cm	
1	5.1		4.5	
2	5.2		4.8	
3	4.9		4.6	
4	4.7		4.5	
5	4.7	Comply	4.6	Comply
Min	4.7		4.5	
Max	5.2		4.8	
Mean	4.9		4.6	

European application engineeri	ng
I ADODATODY TECT DEDODT	March 3 rd , 2025
LABORATORY TEST REPORT	Page 6 / 36
ATR 4756 – MOC2312 Scapa 250	
FORD ES-KU5T-1A303-AA	

7.3 Bundling performance and material compatibility

7.3.1 Initial testing

Apparatus

40mm diameter mandrel Wires Tyco Raychem ACW0219 0.35²

Sample preparation

Assemble bundles 300 mm or greater (300 to 450 mm recommended) in length of wire using two (2) 0.35 sq. mm wires; the wires are to be twisted. The insulation on the wires must have a temperature rating equal to or greater than the temperature rating of the tapes being tested. Wrap the tape to be tested around the bundle with a 50% overlap of Scapa XXXX. After assembly, specimens shall be allowed to stabilize for a period of 20 minutes prior to testing.

Test conditions

- Ambient climate 23°C/50%RH
- Sample length: 300 to 450mm
- Number of twisted cables 2
- Cable twist length ca. / approx 2 cm
- Overlap of tape ca. / approx 50 %
- Number of samples 1
- Conditioning Min 20min at 23°C / 50% RH
- Winding test:
 - o Test climate 23°C/50% RH
 - o Mandrel diameter: 40mm
 - o Number of windings min 2

Procedure

After 20min at 23°C / 50% RH, the bundle specimen shall be bent about a 40 mm diameter mandrel.

Requirements

The tape shall show no indications of cracking or flagging at the ends.

Specimen	Results		Approval
250 Standard		No cracks or flagging	Comply
250 PI2312		No cracks or flagging	Comply

European application engineering			
LABORATORY TEST REPORT	March 3 rd , 2025 Page 7 / 36		
ATR 4756 – MOC2312 Scapa 250			
FORD ES-KU5T-1A303-AA			

7.3.2 Environmental cycling

Apparatus

Climatic chamber ACS DM340 40mm diameter mandrel Wires Tyco Raychem ACW0219 0.35²

Sample preparation

Assemble bundles 300 mm or greater (300 to 450 mm recommended) in length of wire using two (2) 0.35 sq. mm wires; the wires are to be twisted. The insulation on the wires must have a temperature rating equal to or greater than the temperature rating of the tapes being tested. Wrap the tape to be tested around the bundle with a 50% overlap of adhesive tape.

In addition one control sample bundle (wire without tape) shall be prepared to aid in the evaluation of wire color.

After assembly, specimens shall be allowed to stabilize for a period of 20 minutes prior to testing.

Test conditions

- Ambient climate 23°C/50%RH
- Sample length: 300 to 450mm
- Number of twisted cables 2
- Cable twist length ca. / approx 2 cm
- Overlap of tape ca. / approx 50 %
- Number of samples 3
- Conditioning Min 20min at 23°C / 50% RH
- Winding test:
 - o At the end of climatic cycles and after reconditioning 4h at 23°C/50% RH
 - o Mandrel diameter: 40mm
 - o Number of windings: 1

Procedure

Subject the specimens to 7 cycles of the following regime:

- 3 h at service temperature
- 2 h period of uniform cool-down to -40 \pm 2 °C
- 3 h at -40 \pm 2 °C
- 1 h uniform heat-up and humidification to 38 ± 2 °C, and 95 to 98 % R.H.
- 1 h at 38 ± 2 °C, and 95 to 98 % R.H.
- 1 h uniform heating and drying to service temperature

After 7 exposure cycles are completed, one specimen shall be removed from the chamber and then bent about a 40 mm diameter mandrel. Visually inspect the specimen for any cracks, tears, melting, loss of or other forms of degradation. Measure the length of the tape ends that are flagging, if any.

The remaining specimens shall be reconditioned at 23 ± 5 °C and 50 ± 5 % RH for a period of 4 hours. After reconditioning is complete, bend the specimens about a **40 mm** diameter mandrel. Visually inspect the specimens for any cracks, tears, melting, loss of adhesion or other forms of degradation. Measure the length of the tape ends that are flagging, if any.

Record and report any change in appearance and signs of degradation.

All specimens from this test (Post-test) shall be used to execute the material compatibility test.

Requirements

- a) No cracking, melting or degradation.
- b) Flagging maximum 10mm.
- c) The adhesive tape should still exhibit self-adhesive properties. Reduced adhesiveness as compared to the unaged sample is permitted; full hardening or adopting a paint-like condition is, however, not permitted. The aged sample wiring harness may be sticky; however, the adhesive shall not be transferred to clean fingers.
- d) Noticeable discoloration of the adhesive tape is not allowed. The color of the aged and of the unaged tape shall be documented in photographic form.

LABORATORY TEST REPORT

March 3rd, 2025 Page 8 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

Results

250 standard

Specimen	Requirement a)	Requirement b)	Requirement c)	Requirement d)
1	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape
2	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape
3	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape

Requirement		Specimen 1	Specimen 2	Specimen 3
a b				
d	Unaged			

Specimen	Requirement a)	Requirement b)	Requirement c)	Requirement d)
1	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape
2	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape
3	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape

Requirement Specimen 1		Specimen 1	Specimen 2	Specimen 3
a				
d	Unaged			

European application engineering	5
I ADODATODY TEST DEDODT	March 3 rd , 2025
LABORATORY TEST REPORT	Page 9 / 36
ATR 4756 – MOC2312 Scapa 250	
FORD ES-KU5T-1A303-AA	

7.3.3 Thermal ageing 3000h at 150°C

Apparatus

Oven Climats XU250 Wires Tyco Raychem ACW0219 0.35²

Sample preparation

Assemble bundles 300 mm or greater (300 to 450 mm recommended) in length of wire using two (2) 0.35 sq. mm wires; the wires are to be twisted. The insulation on the wires must have a temperature rating equal to or greater than the temperature rating of the tapes being tested. Wrap the tape to be tested around the bundle with a 50% overlap of Scapa 2630.

In addition one control sample bundle (wire without tape) shall be prepared to aid in the evaluation of wire color.

After assembly, specimens shall be allowed to stabilize for a period of 20 minutes prior to testing.

Test conditions

- Ambient climate 23°C/50%RH
- Sample length: 300 to 450mm
- Number of twisted cables 2
- Cable twist length ca. / approx 2 cm
- Overlap of tape ca. / approx 50 %
- Number of samples: 5
- Conditioning Min 20min at 23°C / 50% RH
- Winding test:
 - At the end of each ageing period and after reconditioning 4h at 23°C/50% RH
 - o Mandrel diameter: 20mm
 - o Number of windings: 1

Procedure

20 specimens shall be placed in a suitable high temperature air-circulating oven capable of 8-20 air changes per hour. Specimens shall be exposed to their operable service temperature for a period of 3000 hours.

From 1500h this every 500h, take 5 specimens, bend the specimen around a mandrel with a diameter of 20 mm at a uniform rate of one turn per 10 seconds. Visually inspect the specimens for any cracks, tears, melting, loss of adhesion or other forms of degradation. Measure the length of the tape ends that are flagging, if any. Record and report any change in appearance and signs of degradation. All specimens from this test (Post-test) shall be used to execute the material compatibility test.

Requirements

- a) No cracking, melting or degradation.
- b) Flagging maximum 10mm.
- The adhesive tape should still exhibit self-adhesive properties. Reduced adhesiveness as compared to the unaged sample is permitted; full hardening or adopting a paint-like condition is, however, not permitted. The aged sample wiring harness may be sticky; however, the adhesive shall not be transferred to clean fingers.
- d) Noticeable discoloration of the adhesive tape is not allowed. The color of the aged and of the unaged tape shall be documented in photographic form.

LABORATORY TEST REPORT

March 3rd, 2025

Page 10 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

250 standard

Duration	Specimen	Requirement a)	Requirement b)	Requirement c)	Requirement d)
	1	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	2	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
1500h	3	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	4	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	5	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	1	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	2	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
2000h	3	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	4	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	5	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	1	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	2	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
2500h	3	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	4	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	5	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	1	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	2	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
3000h	3	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	4	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	5	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change

Duration	Specimen 1	Specimen 1 Specimen 2	
1500h	Specimen 4	Specimen 5	/

LABORATORY TEST REPORT

March 3rd, 2025 Page 11 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

Duration	Specimen 1	Specimen 2	Specimen 3
2000h	Specimen 4	Specimen 5	
20001			
Duration	Specimen 1	Specimen 2	Specimen 3
2500h	Specimen 4	Specimen 5	/
Duration	Specimen 1	Specimen 2	Specimen 3
3000h	Specimen 4	Specimen 5	

LABORATORY TEST REPORT

March 3rd, 2025

Page 12 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

Duration	Specimen	Requirement a)	Requirement b)	Requirement c)	Requirement d)
	1	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	2	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
1500h	3	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	4	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	5	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	1	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	2	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
2000h	3	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	4	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	5	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	1	No cracking, melting or degradation	1mm flagging	Adhesive with tack	No color change
	2	No cracking, melting or degradation	2mm flagging	Adhesive with tack	No color change
2500h	3	No cracking, melting or degradation	2mm flagging	Adhesive with tack	No color change
	4	No cracking, melting or degradation	1mm flagging	Adhesive with tack	No color change
	5	No cracking, melting or degradation	2mm flagging	Adhesive with tack	No color change
	1	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	2	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
3000h	3	No cracking, melting or degradation	2mm flagging	Adhesive with tack	No color change
	4	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change
	5	No cracking, melting or degradation	No flagging	Adhesive with tack	No color change

Duration	Specimen 1	Specimen 2	Specimen 3
1500h	Specimen 4	Specimen 5	/

LABORATORY TEST REPORT

March 3rd, 2025 Page 13 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

Duration	Specimen 1	Specimen 2	Specimen 3
2000h	Specimen 4	Specimen 5	1
Duration	Specimen 1	Specimen 2	Specimen 3
2500h	Specimen 4	Specimen 5	/
Duration	Specimen 1	Specimen 2	Specimen 3
3000h	Specimen 4	Specimen 5	/

European application engineering	
LABORATORY TEST REPORT	March 3 rd , 2025
LADUKATUKI TESI KEPUKI	Page 14 / 36
ATR 4756 – MOC2312 Scapa 250	
FORD ES-KU5T-1A303-AA	

7.3.4 Thermal overload 6h at 200°C

Apparatus

Oven Climats XU250 20mm diameter mandrel Wires Tyco Raychem ACW0219 0.35²

Sample preparation

Assemble bundles 300 mm or greater (300 to 450 mm recommended) in length of wire using two (2) 0.35 sq. mm wires; the wires are to be twisted. The insulation on the wires must have a temperature rating equal to or greater than the temperature rating of the tapes being tested. Wrap the tape to be tested around the bundle with a 50% overlap of Scapa 2630.

In addition one control sample bundle (wire without tape) shall be prepared to aid in the evaluation of wire color.

After assembly, specimens shall be allowed to stabilize for a period of 20 minutes prior to testing.

Test conditions

- Ambient climate 23°C/50%RH
- Sample length: 300 to 450mm
- Number of twisted cables 2
- Cable twist length ca. / approx 2 cm
- Overlap of tape ca. / approx 50 %
- Number of samples 3
- Conditioning Min 20min at 23°C / 50% RH
- Winding test:
 - o At the end of exposure
 - o Mandrel diameter: 20mm
 - o Number of windings: 1

Procedure

5 specimens shall be placed in a suitable high temperature air-circulating oven capable of 8-20 air changes per hour. Specimens shall be exposed to their operable service temperature defined by Tape Class plus 50 °C for a period of 6 hours.

After exposure is complete, bend the specimens about a **20 mm** diameter mandrel. Visually inspect the specimens for any cracks, tears, melting, loss of adhesion or other forms of degradation. Measure the length of the tape ends that are flagging, if any. Record and report any change in appearance and signs of degradation.

All specimens from this test (Post-test) shall be used to execute the material compatibility test.

7.3.4.5 Requirements

- a) No cracking, melting or degradation.
- b) Flagging maximum 10mm.
- The adhesive tape should still exhibit self-adhesive properties. Reduced adhesiveness as compared to the unaged sample is permitted; full hardening or adopting a paint-like condition is, however, not permitted. The aged sample wiring harness may be sticky; however, the adhesive shall not be transferred to clean fingers.
- d) Noticeable discoloration of the adhesive tape is not allowed. The color of the aged and of the unaged tape shall be documented in photographic form.

LABORATORY TEST REPORT

March 3rd, 2025 Page 15 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

Results

250 standard

Specimen	Requirement a)	Requirement b)	Requirement c)	Requirement d)
1	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape
2	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape
3	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape

Requir	rement	Specimen 1	Specimen 2	Specimen 3
a b				
d	Unaged Unaged			

Specimen	Requirement a)	Requirement b)	Requirement c)	Requirement d)
1	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape
2	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape
3	No cracking, melting or degradation	0mm flagging	Sticky adhesive Non-sticky harness	No noticeable discoloration of tape

Requi	rement	Specimen 1	Specimen 2	Specimen 3
a b				
d	Unaged			

European application engineering				
LABORATORY TEST REPORT	March 3 rd , 2025			
LADORATORT TEST REPORT	Page 16 / 36			
ATR 4756 – MOC2312 Scapa 250				
FORD ES.KU5T.1A303.AA				

7.3.5 Material compatibility

Apparatus

Climatic chamber ACS DM340 Oven Climats XU250 10mm diameter mandrel 2mm diameter mandrel Wires Tyco Raychem ACW0219 0.35²

Test conditions

- Ambient climate 23°C/50%RH
- Sample length: 300 to 450mm
- Number of twisted cables 2
- Cable twist length ca. / approx 2 cm
- Overlap of tape ca. / approx 50 %
- Number of samples: See protocol for each ageing
- Conditioning Min 20min at 23°C / 50% RH
- Winding test:
 - o At the end of each ageing and after reconditioning 4h at 23°C/50% RH
 - o Mandrel diameter: 10mm and 2mm
 - o Number of windings: 2

Procedure

The adhesive tape is removed from the specimen, the wires separated and a visual inspection performed. By exerting pressure with the thumb the tape is tested for stickiness. Visual alterations on the cable line or the wrapping tape shall be documented in the test report. If the wrapping tape cannot be removed without apparent damage to the cable line, this shall be documented.

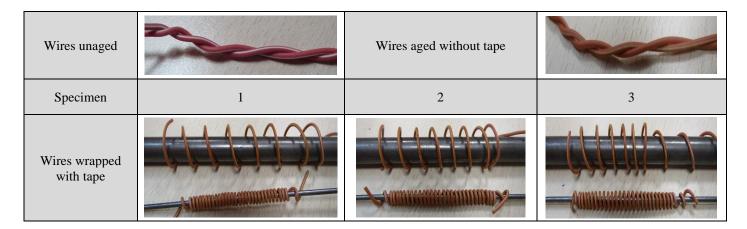
One wire from the specimen is then wrapped at least two times tightly around a mandrel with diameter of 10 mm and is visually evaluated.

If requested, wrap the wires around a 2 mm mandrel and evaluate; this test shall be for information only.

Requirements

- a) During the wrapping test of the wires around the mandrel these shall not exhibit any cracks, fractures or brittleness and shall not be swollen or shrunken.
- b) The original color shall still be visible, identifiable and recognizable.

LABORATORY TEST REPORT


March 3rd, 2025 Page 17 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

7.3.5.1 Material compatibility after environmental cycling

250 Standard

~ .	Require		
Specimen	10mm mandrel 2mm mandrel (for information only)		Requirement b)
1	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires
2	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires
3	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires

a .	Require		
Specimen	10mm mandrel	2mm mandrel (for information only)	Requirement b)
1	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires
2	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires
3	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires

Wires unaged		Wires aged without tape	
Specimen	1	2	3
Wires wrapped with tape			

European application engineering				
LABORATORY TEST REPORT	March 3 rd , 2025 Page 18 / 36			
ATR 4756 – MOC2312 Scapa 250	Fage 10 / 30			
FORD ES-KU5T-1A303-AA				

$\underline{7.3.5.2~Material~compatibility~after~heat~ageing~3000h~at~150^{\circ}C}$

250 STANDARD

	~ .	Require	ement a)	Requirement b)
Duration	Specimen	10mm mandrel	2mm mandrel (for information only)	
	1			
	2	On the 5 samples, no	On the 5 samples, no	On the 5 samples, no
1500h	3	cracking, melting or	cracking, melting or	noticeable change of wires
	4	degradation	degradation	vs wire aged without tape
	5			
	1		1 crack of insulation	
	2	On the 5 samples, no cracking, melting or degradation	No cracking, melting or degradation	On the 5 samples, no
2000h	3		1 crack of insulation	noticeable change of wires
	4		2 cracks of insulation	vs wire aged without tape
	5		Several cracks of insulation	
	1			
	2	On the 5 samples, no cracking, melting or	on the 5 samples, several noticeal	On the 5 samples, no
2500h	3			noticeable change of wires
	4	degradation		vs wire aged without tape
	5			
	1		1 crack of insulation	
	2	On the 5 samples, no	2 cracks of insulation	On the 5 samples, no
3000h	3	cracking, melting or	1 crack of insulation	noticeable change of wires
	4	degradation	Several cracks of	vs wire aged without tape
	5		insulation	

LABORATORY TEST REPORT

March 3rd, 2025

Page 19 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

Duration	Unwrapped wires aged	Wrapped wires Specimen 1	Wrapped wires Specimen 2
1500h	Wrapped wires Specimen 3	Wrapped wires Specimen 4	Wrapped wires Specimen 5
Duration	Unwrapped wires aged	Wrapped wires Specimen 1	Wrapped wires Specimen 2
2000h	Wrapped wires Specimen 3	Wrapped wires Specimen 4	Wrapped wires Specimen 5
	LAULA ASSET		
Duration	Unwrapped wires aged	Wrapped wires Specimen 1	Wrapped wires Specimen 2
		CALLANDON /	
2500h	Wrapped wires Specimen 3	Wrapped wires Specimen 4	Wrapped wires Specimen 5
		- CALLADAGO S	LELLEL DO
Duration	Unwrapped wires aged	Wrapped wires Specimen 1	Wrapped wires Specimen 2
3000h	Wrapped wires Specimen 3	Wrapped wires Specimen 4	Wrapped wires Specimen 5
	THE	CALLA LA	ALLALLA AND MANAGEMENT AND

European application engineering LABORATORY TEST REPORT March 3rd, 2025 Page 20 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

		Rec	quirement a)	Requirement b)
Duration	Specimen	10mm mandrel	2mm mandrel (for information only)	
1500h	1 2 3 4 5	On the 5 samples, No cracking, melting or degradation	On 4 samples, No cracking, melting or degradation On 1 sample, 1 crack of insulation	On the 5 samples, No noticeable change of wires vs wire aged without tape
2000h	1 2 3 4 5	On the 5 samples, No cracking, melting or degradation	No cracking, melting or degradation	On the 5 samples, No noticeable change of wires vs wire aged without tape
2500h	1 2 3 4 5	On the 5 samples, no cracking, melting or degradation	On the 5 samples, several cracks of insulation	On the 5 samples, no noticeable change of wires vs wire aged without tape
3000h	1 2 3 4 5	On the 5 samples, no cracking, melting or degradation	On the 5 samples, several cracks of insulation	On the 5 samples, no noticeable change of wires vs wire aged without tape

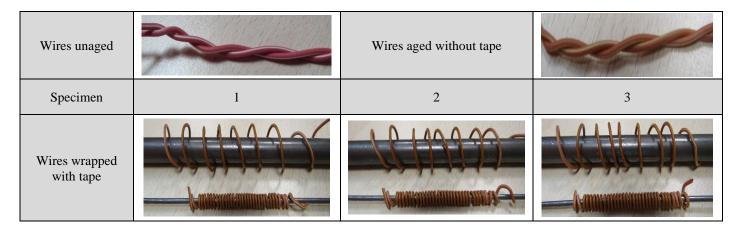
LABORATORY TEST REPORT

March 3rd, 2025 Page 21 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

Duration	Unwrapped wires aged	Wrapped wires Specimen 1	Wrapped wires Specimen 2
1500h	Wrapped wires Specimen 3	Wrapped wires Specimen 4	Wrapped wires Specimen 5
	CTTIMINATION OF THE STATE OF TH		
Duration	Unwrapped wires aged	Wrapped wires Specimen 1	Wrapped wires Specimen 2
		CECELLAND A	GLLL11111
2000h	Wrapped wires Specimen 3	Wrapped wires Specimen 4	Wrapped wires Specimen 5
		CLLL12122	THTTT TO THE TOTAL THE TOT
Duration	Unwrapped wires aged	Wrapped wires Specimen 1	Wrapped wires Specimen 2
2500h	Wrapped wires Specimen 3	Wrapped wires Specimen 4	Wrapped wires Specimen 5
	CTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		
Duration	Unwrapped wires aged	Wrapped wires Specimen 1	Wrapped wires Specimen 2
		CELLIA 1992	Community Community
3000h	Wrapped wires Specimen 3	Wrapped wires Specimen 4	Wrapped wires Specimen 5

LABORATORY TEST REPORT


March 3rd, 2025 Page 22 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

$\underline{\textbf{7.3.5.3 Material compatibility after thermal overload 6H at 200}^{\circ}\text{C}$

250 Standard

	Require			
Specimen	10mm mandrel 2mm mandrel (for information only)		Requirement b)	
1	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires	
2	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires	
3	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires	

	Require		
Specimen	10mm mandrel	2mm mandrel (for information only)	Requirement b)
1	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires
2	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires
3	No cracking, melting or degradation	No cracking, melting or degradation	No noticeable change of wires vs unwrapped wires

Wires unaged		Wires aged without tape	
Specimen	1	2	3
Wires wrapped with tape			<u>emmanama</u>

European application engineering LABORATORY TEST REPORT ATR 4756 – MOC2312 Scapa 250 March 3rd, 2025 Page 23 / 36

7.4 Fluid resistance

Apparatus

Closed and ventilated equipment Oven Climats XU175

Sample preparation

Assemble bundles 300 mm or greater (300 to 450 mm recommended) in length of wire using two (2) 0.35 sq. mm wires; the wires are to be twisted. The insulation on the wires must have a temperature rating equal to or greater than the temperature rating of the tapes being tested. Wrap the tape to be tested around the bundle with a 50% overlap of Scapa 2630.

FORD ES-KU5T-1A303-AA

After assembly, specimens shall be allowed to stabilize for a period of 20 minutes prior to testing.

Test conditions

- Ambient climate 23°C/50%RH
- Sample length: 300 mm
- Number of twisted cables 2
- Overlap of tape ca. / approx 50 %
- Number of samples: 1 by fluid (instead of 3, due to the wires quantity available)
- Conditioning before immersion Min 20min at 23°C / 50% RH
- Fluid immersion time: 5min
- Fluid immersion temperature: 23°C or 90°C
- Winding test:
 - After ageing periods of 72h (instead of 24, 48 and 72h, due to the wires quantity available).
 - Mandrel diameter: 40mmNumber of windings: 1

Procedure

Prepare samples and conduct the tests in accordance with SAE J2192, sections 7.7.1 to 7.7.3, Fluids Resistance. Use table 4 below for list of fluids and temperatures the test is to be run against. In the case of battery acid with aluminium covered tapes, dip the sample in the acid for one (1) second. **Take precautions to ensure that at least 10 mm from each end of the sample is not exposed to the fluid.**

Visually inspect each specimen for any sign of degradation after aging periods of 72h (instead of 24, 48 and 72 hours). Bend each specimen about a 40 mm diameter mandrel.

Visually inspect the specimens for any cracks, tears, melting, loss of adhesion or other forms of degradation. Measure the length of the tape ends that are flagging, if any.

Record and report any change in appearance and signs of degradation.

Fluid	Immersion time (min)	Fluid temperature	Fluid	Immersion time	Fluid temperature
Battery acid (H2SO4)	(11111)	23 ± 3	E85 Ethanol		23 ± 3
Windshield washer		23 ± 3	Transmission fluid		90 ± 3
Engine coolant	=	90 ± 3	Power steering fluid	Ę.	90 ± 3
Brake fluid	3	23 ± 3	Engine oil	3	90 ± 3
Gasoline (SP95 E10)		23 ± 3	Engine cleaner		23 ± 3
Diesel		23 + 3	Salt spray (5% NaCl)		23 + 3

Requirements

- a) No cracking, melting or degradation.
- b) Flagging maximum 10mm.
- The adhesive tape should still exhibit self-adhesive properties. Reduced adhesiveness as compared to the unaged sample is permitted; full hardening or adopting a paint-like condition is, however, not permitted. The aged sample wiring harness may be sticky; however, the adhesive shall not be transferred to clean fingers.
- d) Noticeable discoloration of the adhesive tape is not allowed. The color of the aged and of the unaged tape shall be documented in photographic form.

LABORATORY TEST REPORT

March 3rd, 2025 Page 24 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

Results

250 Standard

Fluid	Requirement a	Requirement b	Requirement c	Requirement d
Battery acid	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape, but becomes matte
Windshield washer	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Engine coolant	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Brake fluid	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Gasoline (SP 95 E10)	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Diesel	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
E85 Ethanol	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Transmission fluid	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Power steering fluid	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Engine oil	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Engine cleaner	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Salt spray (NaCl 5%)	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape

Fluid	Requirement a	Requirement b	Requirement c	Requirement d
Battery acid	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape, but becomes matte
Windshield washer	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Engine coolant	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Brake fluid	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Gasoline (SP 95 E10)	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Diesel	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
E85 Ethanol	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Transmission fluid	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Power steering fluid	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Engine oil	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Engine cleaner	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape
Salt spray (NaCl 5%)	No cracking or other defects	No flagging	Pass all the requirements	No discoloration of tape

LABORATORY TEST REPORT

March 3rd, 2025 Page 25 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

250 Standard

250 Standard						
	Results					
Initial						
Engine oil	E85					
SP95	Diesel	Power steering fluid				
Transmission fluid	Engine coolant	Battery acid				
Brake fluid	Engine cleaner	Windshield washer				

LABORATORY TEST REPORT

March 3rd, 2025 Page 26 / 36

ATR 4756 – MOC2312 Scapa 250 FORD ES-KU5T-1A303-AA

250 PI2312						
	Results					
	Initial					
Engine oil	Salt spray	E85				
SP95	Diesel	Power steering fluid				
Transmission fluid	Engine coolant	Battery acid				
Brake fluid	Engine cleaner	Windshield washer				

European application engineerin	g
I ADODATODY TEST DEDODT	March 3 rd , 2025
LABORATORY TEST REPORT	Page 27 / 36
ATR 4756 – MOC2312 Scapa 250	
FORD ES-KU5T-1A303-AA	

7.5 Cold flexibility 4h at -40°C

Apparatus

Climatic chamber ACS DM340 Wires type a Coroplast FEP FLR9Y white 0,35²

Sample preparation

Assemble bundles 300 mm or greater (300 to 450 mm recommended) in length of wire using two (2) 0.35 sq. mm wires; the wires are to be twisted. The insulation on the wires must have a temperature rating equal to or greater than the temperature rating of the tapes being tested. Wrap the tape to be tested around the bundle with a 50% overlap of Scapa 2630.

After assembly, specimens shall be allowed to stabilize for a period of 20 minutes prior to testing.

Test conditions

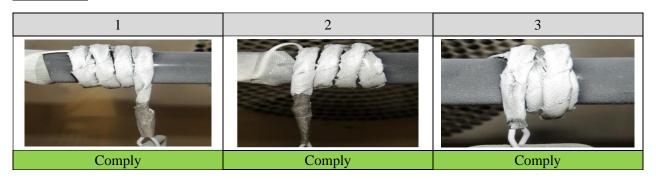
- Ambient climate 23°C/50%RH
- Sample length: 300 to 450mm
- Number of twisted cables 2
- Cable twist length ca. / approx 2 cm
- Overlap of tape ca. / approx 50 %
- Number of samples 3
- Conditioning Min 20min at 23°C / 50% RH
- Winding test:
 - o Test at -40°C
 - o Mandrel diameter: 20mm
 - o Weight: 0.5kg
 - Number of windings min 2

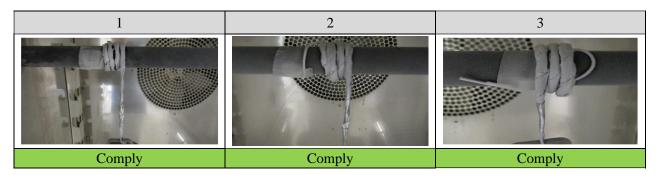
Procedure

Fasten the wrapped wiring harnesses to a rotatable mandrel with a diameter of 20 mm. Load the free end with a weight of 0,5 kg. Age the specimens for 4 h at -40°C in a cold chamber. Then, wrap the wiring harness around the mandrel at least twice (in the cold chamber).

Requirements

After exposure and wrapping is complete, visually inspect the specimen for any cracks, tears, loss of adhesion or other forms of degradation and measure the length of the tape ends that are flagging, if any.


Record and report any change in appearance and signs of degradation.


European application engineering LABORATORY TEST REPORT March 3rd, 2025 Page 28 / 36 ATR 4756 – MOC2312 Scapa 250

Result

250 Standard

FORD ES-KU5T-1A303-AA

European application engineering	g
I ADODATODY TEST DEDODT	March 3 rd , 2025
LABORATORY TEST REPORT	Page 29 / 36
ATR 4756 – MOC2312 Scapa 250	
FORD ES-KU5T-1A303-AA	

7.6 Fogging

Apparatus

0011 Fog - Test hart scientific VA-04

Procedure

Determination of the Fogging Number shall be performed according to SAE J1756 Test Procedure. The testing exposure shall be 3 hours at 100 °C. For this procedure, aluminium foil shall be used as the testing substrate for all adhesive tapes.

Requirement

Fog number >20

Result

Test made by Scapa Italia Post test conditioning period 1h

250 Standard

Sample	1	2	3	4
Fogging (%)	100	100	100	100
Average fogging (%)	100			

Sample	1	2	3	4
Fogging (%)	98	99	99	99
Average fogging (%)	99			

European application engineering	5
I ADODATODY TEST DEDODT	March 3 rd , 2025
LABORATORY TEST REPORT	Page 30 / 36
ATR 4756 – MOC2312 Scapa 250	
FORD ES-KU5T-1A303-AA	

7.7 Flammability

Apparatus

Combustion chamber EquipLabo with Scapa horizontal flame equipment Stopwatch RSPRO $n^{\circ}1443$

Sample preparation

Test based on ISO 3795 (horizontal flammability)
Cable harness with 7 cables 1mm² and 50% overlap (Wrap the tape to be tested around the bundle with a 50% overlap).

Test conditions

According ISO 3795

Evaluation

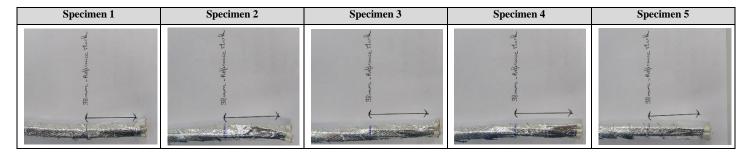
Burning rate = $D/T \times 60$ (mm/min

D = Burning distance measured after the first reference mark.

T = burning time from the first reference mark.

Requirement

Maximum burn rate of 100mm/min


European application engineering LABORATORY TEST REPORT ATR 4756 – MOC2312 Scapa 250 March 3rd, 2025 Page 31 / 36

Result

250 Standard

Flame goes out as soon as burner is removed.

Specimen	Burn distance (mm)	Burn time (min)	Burn rate (mm/min)	Burn rate max (mm/min)	Pass	Fail
1	0	0	0		X	
2	0	0	0		X	
3	0	0	0	0	X	
4	0	0	0		X	
5	0	0	0		X	

FORD ES-KU5T-1A303-AA

250 PI2312

Flame goes out as soon as burner is removed.

Specimen	Burn distance (mm)	Burn time (min)	Burn rate (mm/min)	Burn rate max (mm/min)	Pass	Fail
1	0	0	0		X	
2	0	0	0		X	
3	0	0	0	0	X	
4	0	0	0		X	
5	0	0	0		X	

Specimen 1	Specimen 2	Specimen 3	Specimen 4	Specimen 5
tack	Lark	d'	Lake	and the
2 Janes	ince t	ance of	T. J.	mc I
aby-	A. A. A.	A A A	and the second	- Referen
38 mm	38 mm	38	89	Some
\longleftrightarrow	\longleftrightarrow	\longleftrightarrow	\longleftrightarrow	\longleftrightarrow
				2 2 3 3 4

European application engineering					
I ADODATODA TEST DEDODT	March 3 rd , 2025				
LABORATORY TEST REPORT	Page 32 / 36				
ATR 4756 – MOC2312 Scapa 250					
FORD ES-KU5T-1A303-AA					

7.8 Odor rating

Apparatus

Oven Heareus UT6060 Glass container (instead of metallic cans)

Procedure

Test based on SAE J1351 Evaluation after dry exposure.

Test conditions

Sample area: 250cm²

• Conditioning prior test: 2h at 23°C / 50% RH

• Ageing temperature: 70°C

Ageing time: 24hOdor panel: 3

Evaluation

Odor scale evaluation

• Rating 1: No noticeable odor

• Rating 2: Slight, but noticeable odor

• Rating 3: Definite odor, but not strong enough to be offensive

• Rating 4: Strong offensive odor

• Rating 5: Very strong offensive odor

Note that the scale is arbitrary

Requirement

Passing the odor test for the applicable market is mandatory for tapes intended to be used in the vehicle interior. For tapes intended for use only in the vehicle exterior, it is not mandatory, nor is it necessary for the odor test to be performed.

Odor rating ≤ 2

Result

	Tester	Scale Dry	Scale Mean	Pass	Fail
250 Standard	1	2			
	2	2	2	X	
	3	2			
	Tester	Scale	Scale	Pass	Fail
		Dry	Mean		
250 PI2212	1	Dry 2	Mean		
250 PI2312	1 2	•	Mean 2	X	

7.9 N/A reserved

European application engineering				
LABORATORY TEST REPORT	March 3 rd , 2025 Page 33 / 36			
ATR 4756 – MOC2312 Scapa 250	Tage 00 / 00			
FORD ES-KU5T-1A303-AA				

7.10 Noise dampening

Apparatus

Sample preparation

Sample length (50 \pm 5) mm Sample width (19 \pm 1) mm

Procedure

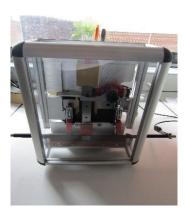
The noise is measured by a microphone positioned 50mm over the impact location. The noise is measured in the form of the sound pressure level (*Lsp*) with frequency evaluation A and time evaluation S. A single layer of the adhesive tape is applied to the steel bar in the area of the impact location over a length of 5 cm in longitudinal direction. Measured is the difference between the noise of the bar wrapped with adhesive tape and the unwrapped bar. The measuring unit is dB(A).

The measurement is performed ten times at the same location of the specimen. If a trend towards lower silencing values can be discerned, for example by compressing the specimen, this shall be noted in the test report.

Classification

Requirement [dB(A)]	Class
$0 \text{ to } \leq 2$	0: No noise dampening
> 2 to ≤ 5	1: Little noise dampening
$> 5 \text{ to} \le 10$	2: Medium noise dampening
$> 10 \text{ to} \le 15$	3: High noise dampening
> 15	4: Very high noise dampening
N/A	N: Not tested

Measurement	Without tape	With 250 PI2312	
		Standard	
		Max acoustic [dB(A)]	
1	84.4	80.4	79.4
2	84.4	82.6	81.4
3	84.1	82.6	82.3
4	84.5	82.2	82.2
5	84.5	82.3	82.4
6	84.7	82.6	82.0
7	84.1	82.7	81.8
8	84.3	82.4	82.1
9	84.2	82.5	82.6
10	84.0	82.1	82.6
Mean	84.3	82.2	81.9
Att	Attenuation		2.4dB
	Class	1	1



European application engineering	
LABORATORY TEST REPORT	March 3 rd , 2025
LADORATORT TEST REPORT	Page 34 / 36
ATR 4756 – MOC2312 Scapa 250	
FORD FS_KU5T_1A303_AA	

7.11 Abrasion resistance

Apparatus

TVAB5420 abrasion tester / 5mm mandrel / Stahlbecker 0.45mm needle

Test conditions

- Ambient temperature (23 \pm 1) °C
- Number of samples 5 Rolls
- Number of measurements: 2 per roll
- Sample length: 100 mm longitudinally glued in a single layer
- Frequency of double strokes (50-60) min-1
- Length of abrasion (15,5 \pm 1) mm
- Needle diameter (0,45 \pm 0,01) mm
- Test force: 7 N
- Test mandrel: 5 mm Steel

Evaluation

Number of cycles (double strokes) and classification

Classification

Number of cycles	Class Number of cycles		Class
< 100	0: No wear protection	5000 to 14999	4: Very high wear protection
100 to 499	1: Little wear protection	15000 to 29999	5: Ultra high wear protection
500 to 999	2: Medium wear protection	> 29999	6 : Super high wear protection
1000 to 4999	3: High wear protection	/	N: Not tested

Result

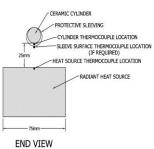
Number of cycles						Class		
Roll 1	Roll 2	Roll 3	Roll 4	Roll 5	Min	Max	Mean	Class
		25	50 standard					
<20					0			
250 PI2312								
			<20					0

the aluminum tape being an electrical conductor, it is not possible to carry out the test according to its operating mode, the number of cycles is therefore approximately evaluated visually.

European application engineering			
I ADODATIONA TECT DEDODA	March 3 rd , 2025		
LABORATORY TEST REPORT	Page 35 / 36		
ATR 4756 – MOC2312 Scapa 250			
FORD ES-KU5T-1A303-AA			

7.12 Thermal effectiveness

Apparatus


Scapa equipment 1000345

Hot box: Metal box 33 x 40 x 40cm
Thermocouples: Type K Watlow
Heat source: Raymax 1330 Watlow

• Temperature controller/recorder: Watlow F4T

Cylinder: Silicon carbide mandrel rod, 16 mm OD x 320 mm long Morgan Technical Ceramics R00RSC 160 000 03200

Procedure

SAE J2302

Test duration 30 min from steady state (Steady-state is defined as three consecutive readings within ± 2 °C of the set temperature. The starting point for determining the initial reaching of steady-state is when the continuous readout (temperature recorder) shows the first indication of the temperature to be measured.

- Test temperatures Only 482 °C ±2°C
- Test height 25 mm
- Overlap of tape 50 %
- Covering of the cylinder ≥ 28 cm
- Number of measurements : 1 by temperature for cylinder without tape / 1 by temperature with tape (instead of 3)

Results

Temperature (°C)	Sample	Sample Average of the cylinders surface temperature WITHOUT TAPE (BLUC) (SSCf)		Thermal effectiveness (BLUC – SSCf)	
121°C	Not tested				
260°C	Not tested				
482°C	250 standard	217.1	123.8		
	250 PI2312	217.1	127.8	89.3	

Test made by Edag laboratory for the data given for the Ford approval

European application engineering LABORATORY TEST REPORT ATR 4756 – MOC2312 Scapa 250 March 3rd, 2025 Page 36 / 36

Test at 482°C

REFERENCE (without tape)			Average
Time(min)	Heat source	Cylinder	cylinder t°
	t°(C)	t°(°C)	Cyllilder t
3	480.4	141.9	
6	481.4	173.4	
9	481.6	195.3	
12	482.1	210.9	
15	482.5	222.3	BLUC
18	482.3	232.6	217.1°C
21	482.0	239.6	
24	482.4	246.3	
27	482.0	252.2	
30	482.2	256.3	

250 STANDARD		250 STANDARD		250 P	12312	Averens
Time(min)	Heat source	Cylinder	Average cylinder t°	Heat source	Cylinder	Average cylinder t°
	t°(°C)	t°(°C)		t°(C)	t°(°C)	cyac. :
3	480.2	56.6	SSCf	480.1	57.9	
6	481.5	74.9		481.2	77.6	
9	481.8	92.3		482.0	96.3	
12	482.0	108.5		482.2	111.9	
15	481.8	122.3		482.2	127.5	SSCf
18	481.9	135.3	123.8°C	482.0	140.0	127.8°C
21	482.1	146.8		481.9	152.1	
24	482.1	157.6		481.7	161.8	
27	481.9	167.6		482.4	172.4	
30	482.2	176.2		482.0	180.4	

FORD ES-KU5T-1A303-AA

7.13 Dielectric performance

N/A – Tape not used for splice

8.1 Color

Evaluation

Visual according DIN IEC 60304

Requirement

Silver

Result

Visual: Silver

End of test report