

From:	Quality Assurance HellermannTyton GmbH
Subject:	PPAP Approval signature deadline
Dear custo	
dead	As you are aware the PPAP process is an integral part of our business. With that in mind, the are informing our customers who are requesting a PPAP that there is a 30 day (calendar) line to which we are expecting your reply back with a signed copy of the PSW with a disposition ding it's validity. It is important that we maintain compliance to the current AIAG PPAP manual.
	As a part of compliance a signed and approved PSW is essential for our records.
١	e reserve the right to consider that PPAP valid and complete, if we do not receive a signed copy of the PSW within 30 days (calendar).
C	nce you have received our PPAP information please e-mail us a copy of your disposition with the appropriate signatures as soon as possible to the following person:
Laura.G	utke@HellermannTyton.de Quality Assistant phone: +49 (0) 4122 701 4872
Your coope	ration is greatly appreciated!
	pecting the procedure as described above, the documentation with HellermannTyton PB-No.:

19.05.2022 unless otherwise disposed!

matically on

HellermannTyton GmbH internal remarks:

PB-No.:

Part Describtion:

97200

T50ROSEC4B

GPN 990760

Part Submission Warrant

Part NameT50ROSEC4B	Cust. Part Number 2M5T-14197-KA
Shown on Drawing No. 2M5T-14197-KA	Org. Part Number <u>15076079</u>
Engineering Change Level AELE-E-12982958-093	Dated 08-Jan-16
Additional Engineering Changes	Dated <u>n/a</u> 15076079 Weight (kg) 0,0030
Checking Aid No. n/a Checking Aid Engineering Change Level	n/a Dated n/a
ORGANIZATION MANUFACTURING INFORMATION	CUSTOMER SUBMITTAL INFORMATION
HellermannTyton GmbH Organization Name & Supplier/Vendor Code	Nursan Kablo Donanimlari (30471) Customer Name/Division
Großer Moorweg 45 Street Address	Nadiye BARUTÇU BuyerBuyer Code
Tornesch 25436 Germany City Region Postal Code Country	Various Application
MATERIALS REPORTING	☑ Yes ☐ No ☐ n/a
Has customer-required Substances of Concern information been reported?	
Submitted by IMDS or other customer format:	5496941
Are polymeric parts identified with appropriate ISO marking codes?	Yes No I n/a
REASON FOR SUBMISSION (Check at least one)	
☑ Initial Submission	Change to Optional Construction or Material
Engineering Change(s)	Supplier or Material Source Change
Tooling: Transfer, Replacement, Refurbishment, or additional	Change in Part Processing
☐ Correction of Discrepancy	☐ Parts Produced at Additional Location
☐ Tooling inactive > than 1 year	Other - please specify below
REQUESTED SUBMISSION LEVEL (Check one)	
REQUESTED SUBMISSION LEVEL (CHeck tile)	
Level 1 - Warrant only (and for designated appearance items, an Appearance Approval Re	port) submitted to customer.
Level 2 - Warrant with product samples and limited supporting data submitted to customer.	
Level 3 - Warrant with product samples and complete supporting data submitted to custome	er.
Level 4 - Warrant and other requirements as defined by customer.	
	ativale accounts to be also a boother
Level 5 - Warrant with product samples and complete supporting data reviewed at organization.	nuon's manufacturing location.
SUBMISSION RESULTS	
The results for \Box dimensional measurements \Box material and functional tes	ets 🔲 appearance criteria 🖳 statistical process package
These results meet all design record requirements:	(If "No" - Explanation Required)
Mold / Cavity / Production Process injection moulding / serial mold	
DECLARATION	
I affirm that the samples represented by this warrant are representative of our parts which were r	• •
Approval Process Manual 4th Edition Requirements. I further affirm that these samples were pro	·
I also certify that documented evidence of such compliance is on file and available for review. I I	nave noted any deviations from this declaration below.
EXPLANATION/COMMENTS:	
A	
Is each Customer Tool properly tagged and numbered?	No 🔽 n/a
Organization Authorized Signature i.A.	Date 19-Apr-22
Print Name i.A. L. Gutke	Phone No. +49 (0) 4122 701 4872 Fax No. +49 4122 701 241
Title Quality Assistant E-mail Laura.Gutke@Hellerma	nnTyton.de_
	SE ONLY (IF APPLICABLE)
PPAP Warrant Disposition: Approved Rejected Other	
Customer Signature	Date
Print Name	Customer Tracking Number (optional)

Rev #: 01 Rev. Date: 25.07.2012 PPAP Template - Uncontrolled VIEW

Production Part Approval, Dimensional Results

HellermannTyton

Internal PB-No.: 97200

Production Part Approval Dimensional Test Results

ORGANIZATION: SUPPLIER/VENDOR CODE:		HellermannTyton GmbH DUNS: 315430892			PART NUMBER: 2M5T-14197-KA PART NAME: T50ROSEC4B					
INSPECTION FACILITY:		QS-Laboratory			DESIGN RECORD CHANGE LEVEL: AELE-E-12982958-093 8-Jan-10 ENGINEERING CHANGE DOCUMENTS:					-16
ITEM	DIMENSION / SPECIFCATION	SPECIFICATION / LIMITS	TEST DATE	QTY. TESTED	NAME of LABORA SUPPLIEF	TORY: R TEST RESULT:	S (DATA)	ОК		NOT OK
					mean	min	max			
1	4,6mm	± 0,2			4,7	4,7	4,8	√	Ι	
								Щ		
								Щ	ĮĻ	
								Щ	ļĻ	
								Щ	L	
								Щ	L	
								Щ	ļĻ	
								Щ	ΙL	
								Щ	ΙĻ	
								Щ	<u> L</u>	
								Щ	ΙL	
								Щ	ΙL	
								Щ	ļ	
								Щ		
								Щ	IL	
								Щ	ΙL	
								Щ		
								Щ	ΙL	
								Щ	ļĻ	
								Ш	ļĻ	
								Щ	L	
								Щ	ļĻ	
								Щ	ļĻ	
								Ш	ΙĹ	
								\Box		
	-									

Blanket statements of conformance are unacceptable for any test results.

This letter is done automatically and is valid without signature.

CREATOR	TITLE	<u>DATE</u>
i.A. L. Gutke	Quality Assistant	19-Apr-22

Rev #: 01

Rev. Date: 25.07.2012

Production Part Approval, Performance Test Results

HellermannTyton

Internal PB-No.: **97200**

Production Part Approval Performance Test Results

MATERIAL SUPPLIER: COUSTOMER SPECIFIED SUPPLIER/VENDOR CODE: Treature approval to req it, include the Supplier (Source) Customer assigned code. SPECIFICATION TEST TESTED TEST	ORGANIZATION: SUPPLIER/VENDOR CODE:		HellermannTyton GmbH DUNS: 315430892			PART NUMBER: 2M5T-14197-KA PART NAME: T50ROSEC4B	١	
MATERIAL SPEC. NO. / REV / DATE MATERIAL SPEC. NO. / REV / DATE SPECIFICATION / LIMITS DATE TESTED TEST CONDITIONS OK OK	*CUST	OMER SPECIFIED SUPPLIER/VENDOR (DEGIGIT NEGGIO OF WINGE EEVEE.	8-Ja	an-16
MATERIAL SPEC. NO. / REV / DATE LIMITS DATE TESTED TEST CONDITIONS OK OK 2 Part must be free of burrs, flash and sharp and sharp edges that may affect edges that may affect edges that may affect the function, safe handling, installation or removal installation or removal of the of the part OK OK DATE TESTED TEST CONDITIONS OK OK DATE TESTED TEST CONDITIONS OK OK DATE TEST CONDITIONS OK OK OK DATE TEST CONDITIONS OK OK OK DATE TEST CONDITIONS OK OK OK OK OK DATE TEST CONDITIONS OK	*If source	e approval is req`d, include the Supplier (Source) Custom	er assigned code.					
2 Part must be free of burrs, flash Part is free of burrs, flash and sharp edges that may affect edges that may affect the function, the function, safe handling, installation or removal installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function, safe handling, installation or removal of the edges that may affect the function of the edges that may affect the function of the edges that may affect the edges that may af			SPECIFICATION /	TEST	QTY.	SUPPLIER TEST RESULTS (DATA) /		NOT
and sharp edges that may affect edges that may affect the function, the function, safe handling, safe handling, installation or removal installation or removal of the of the part		MATERIAL SPEC. NO. / REV / DATE	LIMITS	DATE	TESTED	TEST CONDITIONS	OK	OK
and sharp edges that may affect edges that may affect the function, the function, safe handling, safe handling, installation or removal installation or removal of the of the part								Ш
the function, safe handling, safe handling, installation or removal installation or removal of the of the part								
installation or removal of the of the part								
part		installation or removal of the				of the part	7	
		part						
					<u> </u>			

Blanket statements of conformance are unacceptable for any test results.

This letter is done automatically and is valid without signature.

CREATOR	TITLE	DATE
i.A. L. Gutke	Quality Assistant	19-Apr-22

Rev #': 01

Rev. Date: 25.07.2012

Production Part Approval, Material Test Results

HellermannTyton

Internal PB-No.: 97200

Production Part Approval Material Test Results

ORGANIZATION:		HellermannTyton GmbH		3mbH	PART NUMBER: 2M5T-14197-KA	4		
SUPPLIER/VENDOR CODE:		DUNS: 3154	30892		PART NAME: T50ROSEC4B			
	RIAL SUPPLIER:				DESIGN RECORD CHANGE LEVEL: AELE-E-12982958-093	8-	Jan-	·16
	OMER SPECIFIED SUPPLIER/VENDOF				ENGINEERING CHANGE DOCUMENTS:			
*If source	approval is req`d, include the Supplier (Source) Custo	omer assigned code.			NAME of LABORATORY:			
		SPECIFICATION	TEST	QTY.			Ν	TO
	MATERIAL SPEC. NO. / REV / DATE	/ LIMITS	DATE	TESTED	SUPPLIER TEST RESULTS (DATA)	OK	(OK
	<u>Material:</u>						ΙL	
3.1	Edge clip housing: nylon 6/6				Material of edge clip housing is nylon			
	(WSS-M4D706-B1), black				6/6 (WSS-M4D706-B1), black	✓		
							L	
3.2	Edge clip: spring steel				Material of edge clip is spring steel		L	
	(WSD-M1A283-B50 /				(WSD-M1D283-B50 / WSD-M21P11-B2)		L	
	WSD-M21P11-B2), silver				silver	✓		<u>]</u>
3.3	Cable tie: nylon 6/6				Material of cable tie is nylon 6/6]
	(WSK-M4D648-A), black				(WSK-M4D648-A), black	√]
4	Part must comply with				Part complies with restricted			
	restricted substance				substance management standard			
	management standard				WSS-M99P9999-A1 to safeguard			
	WSS-M99P9999-A1 to safe-				health, safety and the environment	>		
	guard health, safety and the							
	environment							
]
]

Blanket statements of conformance are unacceptable for any test results.

This letter is done automatically and is valid without signature.

CREATOR	TITLE	<u>DATE</u>
i.A. L. Gutke	Quality Assistant	19-Apr-22

Rev #: 01

Rev. Date: 25.07.2012

HELLERMANN TYTON GMBH **GROSSER MOORWEG 45** TORNESCH, GERMANY 25436

Attention : AXEL LANG

Ascend Performance Materials Operations LLC Nylon Plastics and Polymers

3000 Chemstrand Road Cantonment, FL 32533 Telephone: (850)968-7000

> Certificate Date: 11-Feb-22 Delivery No: 382604159 Shipped Qty: 47,450.000 Lbs

> > 21,523.320 Kgs

Customer P.O. No: 4500155499/30

Container: 00000000000002085153

Certificate of Analysis

This certifies that Nylon Resin shipped to you from Ascend Performance Materials Operations LLC has been tested and found to meet required

This material was produced under a Quality System that meets ISO 9001:2015 and IATF 16949:2016 criteria.

If you have questions or concerns about this Certificate of Analysis, please contact Ascend Performance Materials Customer Operations at 1-888-927-2363.

This product meets the requirements of the following specifications: ASTM D4066 PA0121, ASTM D6779 PA0121, WSK-M4D648A (ESF-M4D 82A), MRS # 75, Rev. 7, Date 2-Jan-2019, GMP.PA66.018, CMP NY057 AA, MSDB 41 CPN 1076, MSDB 41 CPN 1899, FMVSS 302*, CPN3490, D4000 PA012, SAE J1639 PA0121, Ford WQ 100A, GMW16036P-PA66.

Material: VYDYNE 22HSP NT

Material No:

10425537

Batch No: JK22VY05

Date of Mfg: 22-Nov-2021

Ascend Performance Materials Operations LLC Specification

Lot Data Property	Test Method	Min	<u>Max</u>	Result	Units
Copper	STM 00667	80	100	88	PPM
Flex Modulus	ISO 178;2MM/MIN	2500		3056	MPa
Moisture	ASTM D6869	0.12	0.20	0.13	%
Nom. Str.@ Brk	ISO 527-1,2 / 1A	17.5	35.0	26.9	%
Notched Izod	ISO 180 / 1A	3.5	8.0	4.9	kJ/m^2
Relative Visc.	ASTM D789[9.34]	45.0	48.0	46.0	N/A
Strength @ Yld	ISO 527-1,2 / 1A	78	98	80	MPa
VISCOSITY NUM. SULFURIC	ISO 307	136.9	142.8	138.9	ml/g

Note: This certificate is generated and controlled by electronic means. No signature is required. This document may not be reproduced, except in full, without written consent of the Nylon Plastics and Polymers Department, Ascend Performance Materials Operations LLC.

All information contained in this letter is provided for informational purposes only and is not meant to alter or waive the appropriate contractual product specifications. Moisturevalues are representative of the product at the time it was sampled. If numerical flame spread ratings appear herein, they are not intended to reflect tha hazards presented by thisor any other material under actual fire conditions. Each end user should determine whether potential fire hazards are associated with the finished product, and whether this resinis suitable for the particular end use.

This Certificate of Analysis is provided by Ascend Performance Materials (or its authorized distributor) to its direct purchaser only and is intended for internal use. It is not valid if resold, conveyed or otherwise transferred to another party without Ascend's prior written consent. Ascend makes no warranties and assumes no liability for any product or certification obtained from an unauthorized source. Contact Ascend at +1 713-315-5700 to confirm the validity of any third party supplier. Ascend and Vydyne are registered trademarks of Ascend Performance Materials Operations LLC.

ABNAHMEPRÜFZEUGNIS

Nach EN10204 3.1

Von:

Du Pont de Nemours Deutschland GmbH

DuPont Str 1

D-63263 NEU-ISENBURG

An:

SEAPACK LOGISTRIC GMBH ESINGER STRASSE 71 25436 TORNESCH

ihre Bestellangaben:

4500142231

Ihre Produkt Ref.:

011-20010 (ZYT105F BK010 25 KG BAG)

Produkt:

ZYT105F BK010 25 KG BAG

Lot Nr:

EMAVG4Y301

Ursprungstand:

Belgium

Versandort:

GENK CLEARED

WHSE 8933 B9

15 Sep 2021

Unsere Bestlangaben /

Versandauftrag:

2500888798 / 7802316276

Wir bestätigen, dass dieses Material den Standardkriterien von DuPont entspricht.

Die unten aufgelisteten Messwerte sind das Ergebnis repräsentativer Proben, die der oben genannten Charge nacheinem definierten Plan entnommen wurden.

			Grenz	werte
Produktmerkmale	Prüfmethode	Einheit Wert	Min.	Max.
Viskositätszahl - Ameisensäure	ISO 307	cm³/g 132	123	141
Viscositätszahl - Schwefelsäure	ISO 307	cm³/g 145	136	154
Feuchtigkeitsgehalt beim Abpacken	ISO 15512	% 0,075		0,180

Bitte ziehen Sie unsere Produktliteratur zu Rate oder setzen Sie sich bei etwaigen Fragen mit Ihrem DuPont Vertreter in Verbindung.

Dieses Zertifikat wurde durch den Computer erstellt und hat keine Unterschrift.

Abteilung Qualitätsmanagement

Abnahmeprüfzeugnis EN 10204 - 3.1

HAGEN

20.04.2020 Telefon +49 2331 964-2879

Verkauter

Lechtenfeld, Sara

Vertreter

Kommission

8110683301 / 110000

Artikel Kunde 10033813 04008052 7777805557

Betriebsaultrag Schmetznummer Abnahmeprüfzeugnis

343371 WA00680764

Kundenidentnummer

138

Lieferant

87375

0	Ret Bestellung	4500045860			
r	Abmissurgen	0,400 mm ×	40,00 mm	Workstoff sech	EN 40420 4
i	Toleranz e	0,000 mm	-	Tolegary nech	EN 10132-4
g	Totorariz -	0,030 mm	0,20 mm 0,00 mm		EN 10140
Ĩ	Warkstoff	C75S	0,00 11111		
n	Ausführung	l.C			
a	Oberfläche	MA-RL (glatt)			
1	Kante	GK (Grand)		ihre Warangruppe 1	10000254
	geockhunts	Max	510 MPa	Destallmenge	11000 kg
	Festigkeit	480 -	640 MPa	Netto	•
	Dehnung	A 80 minimum	17,0 %	Lieferschaln	13410 kg 11002774
					27.05.2020
				Lieferverschr. 61	TLB 19 5
				Lisferverschr, #2	Allgemeine Bemusterungsrichtlinie

Chemische Zusammensetzung

KLEINER GmbH

Postfach 900163

75179 Pforzheim

Göppinger Str. 2-4

C. D. Wälzhotz GmbH & Co. KG Postfach 60 02 52 58138 HAGEN

Schmetznummer	% C	% Si	% Mn	% P	% S	% At	
343371	0,7840	0,2120	0,8600	0,0170	0,0050	0,0070	· · · · · · · · · · · · · · · · · · ·

Technologische Prüfwerte siehe Rückseitel =>

Art. Nr.: Wkz. Nr.:

10000254 30321/001+002

Charge:

15412

C75S

Best. Nr.: WE-P:

4500045660/10 Mittwoch, 3 Juni, 2020

Prüfer:

Reich/Annahme unter Vorbehalt

Werkstoff

C. D. Williamola GmbH & Co. KG Feldmühlenstr. 55 58093 Hagen

Telefon: +49 (0) 2331 964-0 Telefax: +49 (0) 2331 984-21 00 internet www.waelzhoiz.com

E-Mail: info@waelzholz.com

Handeleregister. Hegen HRA 1920 USUMe.: DE 125144075 Seventummer: 321/5866/0019

Dr.-Ing. Hans-Toni Junios Dr.-leg. Helma Buddenberg

Dr. Methius Gierse

Abnahmeprüfzeugnis EN 10204 - 3.1

echnologische Prü	fwerte	· · · · · · · · · · · · · · · · · · ·		
Dicke Bandmitte (mm)	Graite	Streckgrenze Mings	Zugfestigkeit länga	Dehnung leengs
1 0,390	(mm) 40,080	RP0,2 [MPA]	Rm [MPe]	A80 [36]
			545	
Rauheit Ra Kundenvorgebe (µm	Hotifiett [mm]	Geradhett	Schneidgret	
0.18	0,190	[mm] 0,76	[mm] 0,010	

Es wird bestätigt, dass die Ergebnisse der Prüfung den vereinbarten Lieferbedingungen entsprechen. Dieses Zeugnis wurde elektronisch erstellt und benötigt keine Unterschrift.

Lonmüller LODECO GmbH - Im Tropfwiesle 10 - 72275 Alpirsbach-Reutin

Kleiner GmbH Abteilung QM Göppinger Str. 2 – 4 75179 Pforzheim

Umweltbewusste Beschichtungen Zink-Lamellen-Beschichtungen Organische Topcoats/Schmierungen Microschicht-Systeme

Tel. 074 44/519 91 · Fax 074 44/519 92 www.LODECO.de · info@LODECO.de

Alpirsbach-Reutin, 23.09.2020 LO-ka

Abnahmeprüfzeugnis nach EN 10204-3.1

Beleg Nr. / Datum	45000 47960 vom 17.08.2020
Charge	15412

Artikel-Bez.	Blechklammer gehärt.+besch. (Var.P) W-C-W
Sach-Nr.	3000 1026
Index	6 /
ZeichnNr.	TE4-511-000-P

Hiermit bestätigen wir Ihnen, dass oben aufgeführte Teile, gemäß ihrer

Anforderung	Delta-Protekt KL100 + VH 301 GZ beschichtet
Norm	Nach Kundenvorgabe

beschichtet wurden.

Zudern wird bestätigt, dass die festgestellten Prüfergebnisse die Anforderung aus der Bestellung erfüllen:

Vorgabe Schichtdicke	8 – 18 µm	/
Prüfergebnis	14,40 µm / 15,50 µm/ 16,50 µm / 15,50 µm / 17,50 µr	n /

Für eventuelle Rückfragen stehen wir Ihnen selbstverständlich jederzeit zur Verfügung und verbleiben

mit freundlichen Grüßen LODECO GmbH

Abt. QM

Art. Nr.: 30001026

Wkz. Nr.: 303231/001+002

Charge: 15412

Best. Nr.: 4500047960/10
WE- P: Montag, 5 Oktober, 2020

Prüfer: Reich/i.O. Werkstoff C75S+Zn

Lohmüller LODECO GmbH Wir sind MKS-Beschichter

Volksbank Mittlerer Schwarzwald eG IBAN: DE54 6649 2700 0040 3286 02 BIC: GENO DE 61 KZT Kreissparkasse Alpirsbach IBAN: DE85 6425 1060 0000 2476 29 BIC: SOLA DE 51 FD5 USt-IdNr:: DE174324221 Gerichtsstand Freudenstadt

Lonmujier LODECO Gmbi im Tropfwiesle 10 72275 Alpirsbach

Ceschäftsführer: Ursula Lohmüller, Jochen Lohmüller Amtsgericht Stuttgart HRB 430779 TISCHERSCOPE EVALUATION

12.5-9

TIAG

23.09.2020

PART NO. BATCH NO.

DATE PROD.

23.09.2020

BATCH SIZE.

SAMPLE SIZE. NAME:

OPER.NO.

21660

Komm. Kleiner GmbH

15.74 3.831 19:8

INTERMEDIATE EVALUATION d (um) M E A N F (%) ACCURACY HERRESTRREBERG NO. OF MEASUREMENTS

s (um) GTANDARD DEVIATION $-1 \cdot 12$ V (%) COEFF. OF VARIATION

A ESFOGRAM

N 001 14.0 |* 15.0 | 主火火火 003 000 15.0 17.0 001 | * 18.0 |

CUMULATIVE DISTRIB. FUNCTION

UPPER CLASS LIM. C. D. F. 15.020.0 % 16.0 80.0 % 17.0 80.0% 18.0 100 %

essprotokoll zu Ihrer
45000 47960 vom 17.08.2020
Blechklammer
3000 1026 / TE4-511-000-P
Zinklamelle + VH301 GZ

Mit freundlichen Grüßen

LODECO GmbH Im Tropfwiesle 10 72275 Alpirsbach-Reutin

Abt. QM

P)	C / .atz/Fir	112 / rma: 0		PR	UFZE	UGN	IIS	3.1		seit atu	:e: !m: 27.	01 08.20
ΚL	ınde			- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	iner Gmb							
^-		- /0			rztechni		75179 Pfor					
Hr.	schrift	COPE		; Sreifts	. Asichex Loin		73177 7101					
	iftragsr			: 0021								
AL	iftrag v	/OM		: 20.0	8.2020							
	tikelnu			: 2000	1078							
	zeichnu			: Blec	chklamme	∍rn C75	•					
	ichnung M ess ung		s r	:								
—	พแดออนเเรี	9611		<u> </u>			 -	· . · · · · · · · · · · · · · · · · · ·				
٩r	beitsga	ang		: 001	gehärts	at u. a	ngelas	sen	_			
				:		\			j	·		
Pr	üfmərkm	nal		: 001	Härte H	1710	<u> </u>				()	
Pr	üfart			. Vari	abel, N	dormalv	erteil	t				
	leranze	an		: AOT			NENM:	475	.0	AUT	: 4	50.0
	ichprot		squenz		alle		min.					
Me	βmitte)	bezei	chnung	; Härt	:eprüfge	rät						
	nzen und Pro	zešindax;	a) Vorbese	<u></u>) Im Prozef		c) Attuell	aus dea	letzten	10) Marten	
Gra	DEG-X/R U	ÆG-X/R	OEG-A	<u></u>	DEG-X/S	gëltig BEG-X/S	GEG-S	UEG-S	letzten CP(Sge) Warten :Pk(Sges)	Zkrt(Sges)
Gra	DEG-X/R U 0,0	ÆG-X/R 0,0	0EG-A 0,0	tzung t UEG-R 0,0	0EE-X/\$	gāltig BEG-X/S 0,0	0EG-\$ 0.0	UEG-S 0,0	CP(Sge	s) (:Pk(Sges)	
Gra a) b)	DEG-X/R U 0,0 483,2034	ÆG-X/R 0,0 470,6145	DEG-A 0,0 23,0618	LZWNG E UEG-R 0,0 0,0	0EG-X/S 0,0 483,0288	galtig BEG-X/S 0,0 470,7893	0EG~S 0.0 8,9587	UEG-S 0,0 0,0	CP(Sge	s) (6 98 0	Pk(Sges) 1.5683	Zkrt(Sges) 4,7051 4,7383
Gra a) b) c)	DEG-X/R U 0,0 483,2034 482,9114	ÆG-X/R 0,0	0EG-A 0,0	LZWNG E UEG-R 0,0 0,0	0EE-X/\$	gältig BEG-X/S 0,0 470,7893 470,6053	0EG~S 0.0 8,9587	UEG-\$ 0,0 0,0	CP(Sge	s) (1.5483 1,5794	4,7051 4.7383
Gra a) b) c)	DEG-X/R U 0,0 483,2034	ÆG-X/R 0,0 470,6145	DEG-A 0,0 23,0618	LZWNG E UEG-R 0,0 0,0	0EG-X/S 0,0 483,0288	galtig BEG-X/S 0,0 470,7893	0EG~S 0.0 8,9587	UEG-S 0,0 0,0	CP(Sge	s) (6 98 0	Pk(Sges) 1.5683	4,7051 4.7383
Gra a) b) c) Bas	DEG-X/R U 0,0 483,2036 482,9114 iswerte cheroben: ve	ÆG-X/R 0,0 470,6145 470,4484	DEG-A 0,0 23,0618	UEG-R 0,9 0,0 0,0	0ER-X/S 0,0 483,0288 482,7546	gältig BEG-X/S 0,0 470,7893 470,6053	0EG-S 0.0 8,9587 8,8928	UEG-\$ 0,0 0,0	CP(Sge 1. i,	s) (6 98 0	Pk(Sges) 1.5483 1,5794	4,7051 4.7383
Gra a) b) c) Bas	DEG-X/R U 0,0 483,2036 482,9114 iswerte cheroben: ve ahl gesant	ÆG-X/R 0,0 470,6145 470,4484 on - bis	DEG-A 0,0 23,0618	UEG-R 0,0 0,0 0,0	0ER-X/S 0,0 483,0288 482,7546	gültig BEG-X/S 0,0 470,7893 470,6053	0EG-S 0.0 8,9587 8,8928	UEG-\$ 0,0 0,0	CP(Sge i. i, 2 - 11	s) (6 98 0 6932	Pk(Sges) 1.5483 1,5794	4.7051 4.7383 c)
a) b) c) Bas Sti	DEG-X/R U 0,0 483,2034 482,9114 iswerte cheroben: ve ahl gesant gültig	EG-X/R 0,0 470,6145 470,4484 on - bis A	DEG-A 0,0 23,0618	UEG-R 0,9 0,0 0,0	0ER-X/S 0,0 483,0288 482,7546	gültig BEG-X/S 0,0 470,7893 470,6053	0EG-S 0.0 8,9587 8,8928	UEG-\$ 0,0 0,0	CP(Sge i. i, 2 - 11 10	s) (6 98 0 6932	Pk(Sges) 1.5483 1,5794	4.7051 4.7383 c)
a) b) c) Bas Sti Anz	DEG-X/R U 0,0 483,2934 482,9114 iswerte cheroben: ve ahl gesant gültig Heßwerte	EG-X/R 0,0 470,6145 470,4484 on - bis A H	DEG-A 0,0 23,0618	UEG-R 0,9 0,0 0,0 1 - 11 11 55	0EE-X/S 0,0 483,0288 482,7546	gültig BEG-X/S 0,0 470,7893 470,6053	0EG-S 0.0 8,9587 8,8928	UEG-3 0,0 0,0 0,0	CP(Sge i. i, 2 - 11	s) (6 98 0 6932	Pk(Sges) 1.5483 1,5794	4.7051 4.7383 c)
a) b) c) das sti Anz	DEG-X/R U 0,0 483,2034 482,9114 iswerte cheroben: ve ahl gesant gültig	EG-X/R 0,0 470,6145 470,4484 on - bis A H E	DEG-A 0,0 23,0618	UEG-R 0,9 0,0 0,0	0EE-X/S 0,0 483,0288 482,7546	gültig BEG-X/S 0,0 470,7893 470,6053	0EG-S 0.0 8,9587 8,8928	UEG-S 0,0 0,0 0,0	CP(Sge i. i., 2 - 11 10 50 23834.0 62378.0	s) (6 98 0 6932	Pk(Sges) 1.5483 1,5794	4.7051 4.7383 c)
a) b) c) das Sti Anz Sun	DEG-X/R U 0,0 483,2934 482,9114 iswerte cheroben: ve ahl gesant gültig Heßwerte am der Morte	EG-X/R 0,0 470,6145 470,4484 on - bis A H E E IX	DEG-A 0,0 23,0618 22,8312	UEG-R 0,0 0,0 0,0 1 - 11 11 55 26230,(12510626,6	0EE-X/S 0,0 483,0288 482,7546	gültig BEG-X/S 0,0 470,7893 470,6053	0EG-S 0.0 8,9587 8,8928	UEG-S 0,0 0,0 0,0	CP(Sqe 1. 1, 2 - 11 10 50 23834.0 62378.0 59556.0	s) (6 98 0 6932	Pk(Sges) 1.5483 1,5794	4.7051 4.7383 c)
Gra b) c) Bas Sti Anz Sun (Sun Hit	DEG-X/R U 0,0 483,2034 482,9114 iswerte cheroben: ve ahl gesant gültig Hegwerte am der Werte ams der Werte telwert	EG-X/R 0,0 470,6145 470,4484 on - bis A H E E E E E E E E E E E E E E E E E E	DEG-A 0,0 23,0618 22,8312	UEG-R 0,0 0,0 0,0 1 1 11 11 55 26230,(12510626,(688012900.6	0EE-X/S 0,0 483,0288 482,7546 11 25.	gültig BEG-X/S 0,0 470,7893 470,6053	0EG-S 0.0 8,9587 8,8928	UEG-S 0,0 0,0 0,0	CP(Sqe i. i., 2 - 11 10 50 23834.0 62378.0 59556.0 476.68	s) (6 98 0 6932	Pk(Sges) 1.5483 1,5794	4.7051 4.7383 c)
Gra a) b) c) das Sti Anz Sun (Sun Mit Mit	DEG-X/R U 0,0 483,2034 482,9114 iswerte cheroben: ve ahl gesant gültig Hebmerte am der Werte ams der Werte telwert tlers Spannu	EG-X/R 0,0 470,6145 470,4484 on - bis A H E C	DEG-A 0,0 23,0618 22,8312	UEG-R 0,0 0,0 0,0 1 1 11 11 55 26230,6 12510626,6 688012900.6 476.5	0EE-X/S 0,0 483,0288 482,7546 11 25.	gültig BEG-X/S 0,0 470,7893 470,6053	0EG-S 0.0 8,9587 8,8928	UEG-S 0,0 0,0 0,0	CP(Sge 1. 1, 2 - 11 10 50 23834.0 62378.0 59556.0 476.68 10.8	6980 6932	Pk(Sges) 1.5483 1,5794	4.7051 4.7383 c)
Gra a) b) c) das stiz Sum Mitt Mit	DEG-X/R U 0,0 483,2034 482,9114 iswerte cheroben: ve ahl gesant gültig Hebwerte as der Herte mes der Herte telwert telwert tlere Standa	EG-X/R 0,0 470,6145 470,4484 on - bis A H E E X 2	DEG-A 0,0 23,0618 22,8312	UEG-R 0,0 0,0 0,0 1 1 11 11 55 26230,6 12510626,6 688012900.6 476.5 10,5	0EE-X/S 0,0 483,0288 482,7546 11 25.	gültig BEG-X/S 0,0 470,7893 470,6053	0EG-S 0.0 8,9587 8,8928	UEG-S 0,0 0,0 0,0	CP(Sge 1. 1, 2 - 11 10 50 23834.0 62378.0 59556.0 476.68 10.8 4.256	6980 6932 11	Pk(Sges) 1.5483 1,5794	4.7051 4.7383 c)
Great a) b) Bas Stiz Sun Mitta	DEG-X/R U 0,0 483,2034 482,9114 iswerte cheroben: ve ahl gesant gültig Hebmerte am der Werte ams der Werte telwert tlers Spannu	EG-X/R 0,0 470,6145 470,4484 on - bis A H E E X 2	DEG-A 0,0 23,0618 22,8312	UEG-R 0,0 0,0 0,0 1 1 11 11 55 26230,6 12510626,6 688012900.6 476.5 10,5 4.3	0EE-X/S 0,0 483,0288 482,7546 11 25.	gültig BEG-X/S 0,0 470,7893 470,6053	0EG-S 0.0 8,9587 8,8928	UEG-S 0,0 0,0 0,0	CP(Sge 1. 1, 2 - 11 10 50 23834.0 62378.0 59556.0 476.68 10.8	6980 6932 11	Pk(Sges) 1.5483 1,5794	4.7051 4.7383 c)

unsere Auftragsnr.: 203766 Ihre Bestellnummer: 4500047959 Art. Nr. 30001024 6,25 Mio/ 2894 Kg

Wkz. Nr. 30321/001+002

Charge 15412

Auftr. Nr. 4500047959/10 **Datum** Freitag, 28 August, 2020

Prüfer Britsche / i.O.

Material C 75S(gehärtet)

SPC / 110 / 001 EINZELWERTLISTE Seite: 02 Platz/Firma: 00/01 Datum: 27.08.20

Huener	Datum	Zeit	Präfer-ID	Fehier	Neßwort	ESP?	AUT	AOT	
0000001	25.08.20	20:23:28	8ETRIE8	0	479.0	1		s.,,,H	
		20:23:30		Ō	477.0	7		1	
		20:23:31		0	482.0	1	,	\$+	
0000004	25,08.20	20:23:32	BETRIES	0	485.0	- /		,¥,,,#	
0000005	25.08.20	20:23:34	BETRIEB	0	473,6	1	1	#	
0000006	25.08.20	23:18:57	BETRIED	٥	469.0	1	*.		
0000007	25.08.20	23:18:58	BETRIEB	0	474,0	- /			
8000008	25.08.20	23:19:09	DETRIED	0	473,0	1	1		
0000009	25.04.20	23:19:23	BETRIEB	0	480.0	- 1	*		
0100000	25.08.20	23:20:17	DETRIEN	0	478.0	1	******		
0000011	26.08.20	01:57:45	DETRIEB	0	478.0	- /	,		
		01:58:12	•	0	472.0	1	,,,,*,		
0000013	26.98.20	91:59:06	BETRIED	9	484.0	- !			
		01:59:57		0	475.0	!	,		
		02:00:11		0	472.0	- ţ	,\$		
		05:11:44		0	476,0	!	4		
		05:11:47		9	483.0	- !	********		
		05:11:49		9	486,0	!	,		
		05:11:51		0	485.0	!			
		05:11:53		0	475,0	!			
		10:03:49		D	476.0	!	1		
		10:03:52		0	480,0	!			
		10:03:54		D	468.0	- {	*		
		10:03:57		0	477,0	- !	!		
		10:03:59		•	474.0	ļ	,,,,,; ,,,,,,		
	·	14:27:13		•	484,0	- [,		
		14:27:14			479,0	1			
		14:27:15		0	477,0 474. 0	'n	1		
		14:27:16 14:27:18		ě	480.0	<i>'i</i>			
		17:04:18		ŏ	479.0	'n	***		
		17:04:19		ŏ	488.0	i i			
		17:04:22		Ö	486.0	Ì	**		
		17:04:23		Ö	485,0	7	**		
		17:04:27		ò	481.0	ì	•		
		19:56:02		Ó	480,0	ì	••		
	'	19:56:04		0	476.0	Ĩ	1	#	
0000038	26.68.20	19:56:07	BETRIER	0	473,0	1	**	}	
0000039	26.68.20	19:56:10	BETRIEB	٥	466.0	1	\$		
0000040	26,00.20	19:56:11	BETRIEB	Þ	474,0	1	1	++	
		22:43:31		0	470.0	1	,.,*,		
		22:43:32		0	471,0	1	*		
		22:43:35		0	476.0	!	,1		
		22:43:36		0	480,0	Ţ	**		
		22:43:38		0	475.0	Ţ	,4		
		01:19:52		0	480,0	- (*******		
		01:20:55		0	473.0	1	1		
		61:21:10		0	476,0	1	**		
		01:21:45		0	474.0	ļ	1		
0000050	27.08.20	91:21:52	BETRIEB	¢	471,0	1	\$,	******	

* Härterei Aribert Conrad GmbH

				## ##	•••	**** ****	: : ' ' '	''	1111		0.0	LÞ LÞ LÞ		0		83 TAT 28 83 TAT 36 83 TAT 58	7Z: 11:	02:41 02:41	27.08.20 27.08.20 27.08.20 27.08.20	0000023 0000023 0000023
		<u></u>		10		*		TVA	 2455		11 4 H		·	o e (46	13	GI-tefär4 8318736		1107	Datum 27,08.26	
δ0 02,80,72	Selte:		1					u	 	_	_	7	NI.	<u> </u>		10/ 100			nn 13/2	bjets SbC

HellermannTyton

Prüfprotokoli / Testreport

Parameter:

 Prüfung / Test
 : Abzugskraft

 Artikel / Part-name
 : Klammer unsortiert

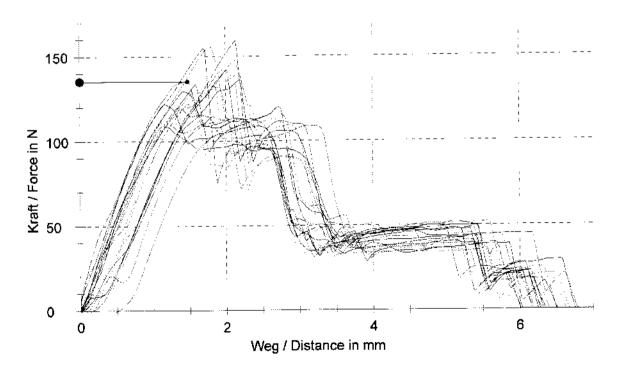
 Artikei-Nr / Part-no
 : 019-00522
 PL 1-347306

 Prüfer / Checker
 : F.Freiwald

Datum / Test-date : 23.10.2020
Temperatur / Temperature in °C : 22
Prüfgeschwindigkeit / Testspeed : 100 mm/min
Form-Nr / Mould-no. : Kleiner
Nest Nr von/bis / Cavities : n/a

Nest Nr von/bis / Cavities : n/a
Material : Federbandstahl (C75S)
Buchse / Hole-size : 1mm Stahlblech
Fertigungs-Datum / Date of production : 05.10.2020

Wassergehalt / Moisture content ; n/a


Statistik / Statistic:

Serie n = 20	Fmax N
тin	108,98
max	159,20
X	132,53
s	15,18
x - 3s	87,01
x + 3s	178,06

Ergebnisse / Results:

		Fmax		Fmax		Fmax
	Nr	N	Nr	N .	Nr	N_
•	max		max		max	
-	min	70,00	min	70,00	min	70,00
-	1	135,22	8	129,25	15	154,74
-	2	155,75	9	159,20	16	111,59
-	3	136,33	10	141,72	17	121,91
-	4	147,49	11	142,04	18	121,80
-	5	120,20	12	133,66	19	108,98
-	6	132,84	13	111,64	20	131,87
•	7	140.15	14	114,31		-

Grafik / Graph:

Abnahmeprüfzeugnis/CoA

nach EN 10204-3.1 / according to EN 10204-3.1

AKRO-PLASTIC GmbH

Ein Unternehmen der Feddersen-Gruppe

PROBENIDENTIFIKATION / DESCRIPTION OF PRODUCT:

Nummer / Item number:

02179-0

Bezeichnung / Material:

AKROMID A3 1 S3 schwarz (1139)

PRODUKTIONSDATEN / PRODUCTION DATA:

Charge / LOT: OC03 122395

PRÜFERGEBNISSE / TESTRESULTS:

Prüfung Testing	Norm Norm	Prüfbedingung Testing condition	Spezifikation Target Value	Istwert Actual Value	Einheit Unit
Water content Restfeuchte	DIN EN ISO 15512 Verf. B		<= 0,15	0.08	%
Tensile modulus Zug-E-Modul	DIN EN ISO 527- 2/1A	1 mm/min / RT	2550 +/- 300	2430	MPa
Tensile strain at break Bruchdehnung	DIN EN ISO 527- 2/1A	50 mm/min / RT	35,0 +/- 15,0	34.5	%
Tensile strain at yield Streckdehnung	DIN EN ISO 527- 2/1A	50 mm/min / RT	>= 4,0	8.5	%
Tensile stress at yield Streckspannung	DIN EN ISO 527- 2/1A	50 mm/min / RT	64,0 +/- 5,0	61.5	MPa
Charpy notched impact strength Charpy Kerbschlagzähigkeit	DIN EN ISO 179- 1/1eA	23°C	15,0 +/- 3,0	17.3	kJ/m²

Freigabedatum / date of release:

07.09.2021

Zusatzvermerke / remarks:

Niederzissen, 07.09.2021

Gez. Abnahmebeauftragte / Inspection representative: i.V. Ute Bürger

Dieses Dokument wurde elektronisch erstellt und ist ohne Unterschrift gültig. This document is generated electronically and is valid without signature.

Die in diesem Material eingesetzten Rohstoffe entsprechen der Empfehlung der EU-Richtlinie 2000/53 des europäischen Parlamentes vom 18.09.2000 über Altfahrzeuge. Hiermit wird bestätigt, dass die Lieferung den Vereinbarungen bei der Bestellannahme entspricht. Das Abnahmeprüfzeugnis entbindet den Käufer nicht von der ihm obliegenden gesetzlichen Eingangskontrolle und stellt keine Zusicherung bestimmter Eigenschaften dar.

The raw material used in this material complies with the recommendations of the EU-Guideline 2000/53 of the European Parlament dated 18 September 2000 about old vehicles. It is confirmed herewith that the delivery meets the agreements on receipt of order.

P-FMEA	D-02	Project- No GPN / NT Nr.	variable	Revision date Überarbeitungsdatum	26.05.2021			
i iodact Gioap	assembling edge clips (Montage Edge Clips)	Installation location Verbauort des Bauteils		Revision by Überarbeitet durch:	M. Michel			
Part No Artikel Nr.	variable	Drawing number Zeichnung Nr.	variable	Review Date Überprüfungsdatum	26.05.2022			
Part Description Artikel Bezeichnung		Ind. Of Drwg. /date Zg. Index / Datum	variable	Reviewed by Überprüft durch	M. Michel			
	M.Michel Prod., O.Pracht QS, H.Spieß PE, S.Behrend NT-PM							
Process Responsibility Prozessverantwortung bei	HT-Tornesch	Version of FMEA Version der FMEA	13	This FMEA is generated and administrated electronically. Valid without s Diese FMEA ist elektronisch erstellt und verwaltet. Gültig ohne Untersch				
Prepared by Erstellt von		Original Issue Date Erstausgabe Datum	01.07.2010					

We confirm that we have process FMEA's available - They are valid for the parts belonging to the Product Group mentioned above.

Due to confidentially reasons all further pages of this Process-FMEA need to remain internally, they should not be distributed to external!

In case of entitled interests this documents can be reviewed upon request and on site.

PE, NTPM, QM, PR

150-76079

PART NUMBER:

Process Flow Chart

GPN:

99-0760

CORE TEAM:

ev: 26.02.2015

PART NAME: T50ROSEC4B-PA66HS/PA66HIRHS-BK KEY CONTACT PHONE: +49 4122 701 330 DRAWING : 141501 DATE REVIEWED: 16.11.2020 PRODUCT GROUP: PRODUCTION PLANT: D-02 CUSTOMER APPROVAL: HT Tornesch Process / test procedure document goods in 100 incoming inspection 010-05040 T50ROS-HS-BK-M1 011-20130 PA66 HIR HS BK 019-00522 metal clip VA13.1 200 injection moulding process inspection first / final shot + 1 per shift visual attributes 1-9 by production / for process parameter see EDP-System 010-76099 EC4 A VA13.1 101 goods in HT Supplier final inspection (3 times) 150-76079 T50ROSEC4B-PA66HS/PA66HIRHS-BK T50ROSEC4B-PA66HS/PA66HIRHS-BK 150-76079 VA13.1 1000 ARTICLE-AUDIT 100 annual layout 150-76079 T50ROSEC4B-PA66HS/PA66HIRHS-BK VA13.1

print date: 19.03.2021 page 1/1 docv:1

doc-no: CP150-76079

17.07.2020

Control Plan

PART NUMBER: O Prototyp 150-76079 GPN: 99-0760 CORE TEAM: PE, NTPM, QM, PR PART NAME: T50ROSEC4B-PA66HS/PA66HIRHS-BK KEY CONTACT PHONE: +49 4122 701 330 O Pre-Launch DRAWING: 141501 DATE REVIEWED: 16.11.2020 • Production PRODUCT GROUP: PRODUCTION PLANT: HT Tornesch D-02 CUSTOMER APPROVAL:

rt / Pı	Prozess No / Characteristic	SC	Part / Prozess Specification / Tolerance	Sample Size	Frequenz	Evaluation / Measurement Technique Control Method	Reaction Pl
)	incoming inspection			·			VA13.1
	010-05040 T50ROS-HS-BK-M1						1 1
	116 compare with master sample			1 bag	1 / delivery	420000 sample / visual	
	011-20130 PA66 HIR HS BK			I	I		
	302 COC residual moisture			1 bag	1 / delivery	410000 manual / visual	
	304 COC notch impact strength			1 bag	1 / delivery	410000 manual / visual	
	305 COC yield stress			1 bag	1 / delivery	410000 manual / visual	
	019-00522 metal clip						
	40-1 dimension		4,05 ± 0,15 mm	5 pcs	1 / delivery	40000 calliper	
	40-2 dimension		0,4 +0,2 / -0,4 mm	5 pcs	1 / delivery	140000 profile projector	
	40-3 dimension		6,2 ± 0,25 mm	5 pcs	1 / delivery	40000 calliper	
	40-4 dimension		7,95 ± 0,2 mm	5 pcs	1 / delivery	40000 calliper	
	54 expanding test			50 pcs	1 / delivery	80243 check gauge	
	116 compare with master sample			5 pcs	1 / delivery	500353 Master Samples, visual	
	307 COC hardness		410 - 520 HV10	1	1 / delivery	410000 manual / visual	
	1007 pull out force		min 70 N / HTQS-Blech	25 pcs	1 / delivery	10000 Tensile tester	
	process inspection						VA13.1
	010-76099 EC4 A						
	1 sink marks			1 shot	1 / day		
	2 shortage			1 shot	1 / day		
	3 Flashes			1 shot	1 / day		

doc-no: CP150-76079

Control Plan

rev: 17.07.2020

	Proto	tvn		PART NUMBER:	150-76079		GPN: 99-0760	PE, NTPM, QM, PR						
	- 1010	ιγP		PART NAME:	T50ROSEC4B-F	A66HS/	PA66HIRHS-BK	KEY CONTACT PHONE: +49 4122 701 330						
	Pre-La			DRAWING :	141501			DATE REVIEW	/ED: 16.11.20	020				
•	Produ	iction		PRODUCT GROUP:		DRODU	CTION PLANT: HT Tornesch							
				PRODUCT GROOF.	D-02	FRODO	CTION PLANT: HT Tornesch	CUSTOMER A	APPROVAL:					
Part /	Prozess N	o / Characterist	iic			SC	Part / Prozess Specification / Tolerance	Sample Size	Frequenz	Evaluation / Measurement Technique Control Method	Reaction Plan			
50	pro	cess insped	ction								VA13.1			
	010	-76099	EC4 A											
		4	mould mis alig	gnment				1 shot	1 / day					
		5	moulding lines	S				1 shot	1 / day					
		6	burnings					1 shot	1 / day					
		7	dirt					1 shot	1 / day					
		8	deformation					1 shot	1 / day					
	9 inclusions 54 expanding test						1 shot	1 / day						
							1 shot	1 / day	80066 check gauge					
										80136 check gauge				
		65	shot weight					1 shot	1 / day	20000 balance				
81	fina	l inspectio	n (3 times)								VA13.1			
		-76079	, ,	B-PA66HS/PA66	HIRHS-BK						_			
			quantity				I	1 bag	1 / delivery	430000 scale counter / manual				
			· ·						·					
			mixed parts in					1 bag	1 / delivery	410000 manual / visual				
		45	mixed parts in	pack unit				1 bag	1 / delivery	410000 manual / visual				
		59	assembling					1 bag	1 / delivery					
		59	assembling					1 bag	1 / delivery					
		118	identification	single parts				1 bag	1 / delivery					
		118		single parts				1 bag	1 / delivery					
		146	label					1 bag	1 / delivery					
100	ann	ual layout									VA13.1			
	150	-76079	T50ROSEC4	B-PA66HS/PA66	HIRHS-BK									

doc-no:

CP150-76079

Control Plan

17.07.2020

PART NUMBER: 150-76079 GPN: 99-0760 CORE TEAM: PE, NTPM, QM, PR O Prototyp PART NAME: T50ROSEC4B-PA66HS/PA66HIRHS-BK KEY CONTACT PHONE: +49 4122 701 330 O Pre-Launch DRAWING: 141501 DATE REVIEWED: 16.11.2020 • Production PRODUCT GROUP: PRODUCTION PLANT: HT Tornesch D-02 CUSTOMER APPROVAL: Part / Prozess No / Characteristic Part / Prozess Specification / Tolerance Sample Size Freguenz Evaluation / Measurement Technique Reaction Plan

					'	· ·	Control Method	
100	annual layout							VA13.1
	150-76079 T50ROSEC4B-PA66HS/PA66HIRHS-BK							
	1200 requalification / product audit acc. DRW-spec incl. packageing (1 part-No for mentioned part group)				1 shot	1 acc. AUDITPLAN		

CAPABILITY STUDY

17.02.2021

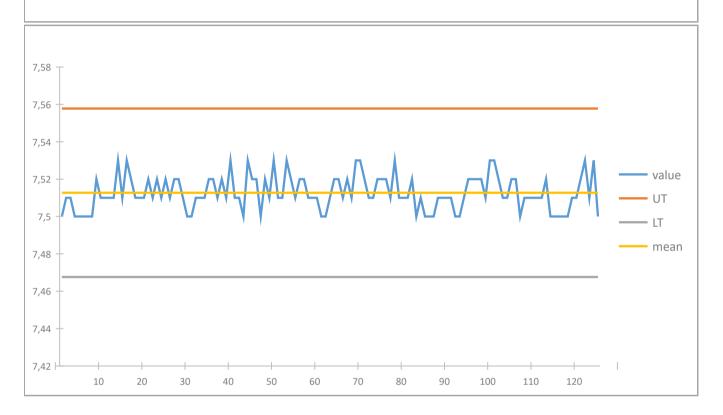
-shot weight-

gpn: 99-0760

part name: EC4

spec (+/- [%]) 0,600

ppk: 1,67


tolerance (+/- [g]) 0,045

ppk spec (min): 1,67

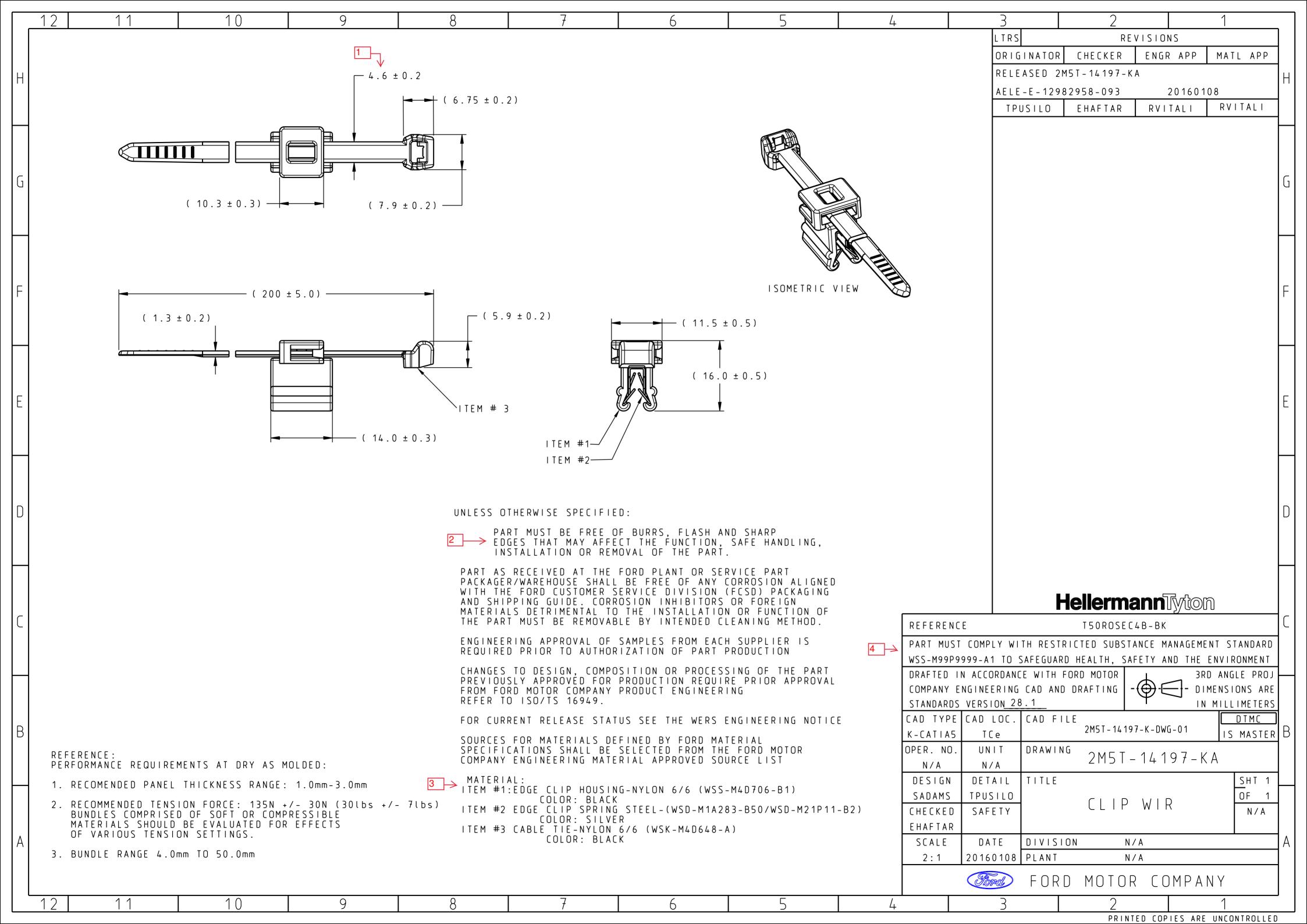
min: 7,500

max: **7,530**

mean: 7,513 stddiv: 0,009

data tab:

0 V	alue														
1	7,500	17	7,520	33	7,510	49	7,510	65	7,520	81	7,510	97	7,520	113	7,520
2	7,510	18	7,510	34	7,510	50	7,530	66	7,510	82	7,520	98	7,520	114	7,500
3	7,510	19	7,510	35	7,520	51	7,510	67	7,520	83	7,500	99	7,510	115	7,500
4	7,500	20	7,510	36	7,520	52	7,510	68	7,510	84	7,510	100	7,530	116	7,500
5	7,500	21	7,520	37	7,510	53	7,530	69	7,530	85	7,500	101	7,530	117	7,500
6	7,500	22	7,510	38	7,520	54	7,520	70	7,530	86	7,500	102	7,520	118	7,500
7	7,500	23	7,520	39	7,510	55	7,510	71	7,520	87	7,500	103	7,510	119	7,510
8	7,500	24	7,510	40	7,530	56	7,520	72	7,510	88	7,510	104	7,510	120	7,510
9	7,520	25	7,520	41	7,510	57	7,520	73	7,510	89	7,510	105	7,520	121	7,520
10	7,510	26	7,510	42	7,510	58	7,510	74	7,520	90	7,510	106	7,520	122	7,530
11	7,510	27	7,520	43	7,500	59	7,510	75	7,520	91	7,510	107	7,500	123	7,510
12	7,510	28	7,520	44	7,530	60	7,510	76	7,520	92	7,500	108	7,510	124	7,530
13	7,510	29	7,510	45	7,520	61	7,500	77	7,510	93	7,500	109	7,510	125	7,500
14	7,530	30	7,500	46	7,520	62	7,500	78	7,530	94	7,510	110	7,510		
15	7,510	31	7,500	47	7,500	63	7,510	79	7,510	95	7,520	111	7,510		
16	7,530	32	7,510	48	7,520	64	7,520	80	7,510	96	7,520	112	7,510		


REPEATIBILITY AND REPRODUCIBILITY ANALYSIS REPORT

acc. to MSA 4th Edition

Rev.: 12.10.2011

NON DESTRUCTIVE TEST

Specimen:	Plastic r	eference pa	art (GPN20	7.00	Gage typ	JCTIVE TEST	Weight s	cale		Plant :	Tornesch	(V-	
Part. No. :	0102130				Gage nu		PMN 02-			Date:	31.01.202		
Characteristic	: Shot we	ight (±3,5%	o)		performe				approve		1		
Tolerance :	0,06	4	Units	gramm	Name: Signature	Tobias C	ohrt			Jens Feil			
# of operator:	3:	3		# of trials:			7	of parts:	10				
OPERATOR	A:	Victir Sale	ogin		B:	Stefan Sp	pecker		C:	Frank W	erner		
		Р		Α		R		Т			RESULT	3	
TRIAL		2	3	4	5	6	7	8	9	10		AVG	
A 1	8,086	8,096	8,092	8,094	8,097	8,090	8,088	8,091	8,094	8,093	A ₁		
2	8,087	8,095	8,093	8,094	8,097	8,090	8,088	8,092	8,094	8,093	A ₂		
3	8,086	8,096	8,093	8,095	8,098	8,091	8,089	8,091	8,093	8,095	A_3		
Average	8,086	8,096	8,093	8,094	8,097	8,090	8,088	8,091	8,094	8,094	X_A	8,0924	
Range	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,002	R _A	0,0011	
B 1	8,087	8,096	8,093	8,094	8,097	8,090	8,088	8,091	8,094	8,093	B ₁		
2	8,087	8,097	8,093	8,094	8,097	8,091	8,087	8,092	8,093	8,093	B ₂		
3	8,086	8,098	8,093	8,095	8,097	8,092	8,089	8,090	8,094	8,093	B ₃		
Average	8,087	8,097	8,093	8,094	8,097	8,091	8,088	8,091	8,094	8,093	X _B	8,0925	
Range	0,001	0,002	0,000	0,001	0,000	0,002	0,002	0,002	0,001	0,000	R _B	0,0011	
C 1	8,087	8,097	8,092	8,095	8,097	8,091	8,089	8,091	8,093	8,093	C ₁		
2	8,086	8,098	8,095	8,095	8,096	8,091	8,089	8,091	8,094	8,094	C ₂		
3	8,088	8,097	8,093	8,094	8,097	8,090	8,088	8,092	8,095	8,093	C ₃		
Average	8,087	8,097	8,093	8,095	8,097	8,091	8,089	8,091	8,094	8,093	Xc	8,0927	
Range	0,002	0,001	0,003	0,001	0,001	0,001	0,001	0,001	0,002	0,001	Rc	0,0014	
PAR	T 8,0867	8,0967	8,0930	8,0944	8,0970	8,0907	8,0883	8,0912	8,0938	8,0933	R _{PART} =	0,0103	
	$= R_A + R_B +$			0,0011	+	0,0011	+	0,0014	1	3	R=	0,0012	
	= [Max (X),	ABC] - [Mir	$(X)_{ABC}$ =	8,0927	-	8,0924					X _{DIFF} =	0,0003	
UCL	= R	*	D ₄ =	0,0012	*	2,58					UCL _R =	0,003	
D_4		7 for 2 trials	3	2,58	for 3 trials	3							
Measuremen							Total Va	riation Me	ethod	Tolerand	e Method		
Repeatibility			n (EV)	9									
		= R * K ₁			Trials	K ₁	4	00[EV/TV	-	% EV = 100[EV/(tol/6)]			
Ponroducihi		0,0007	(4)()		3	0,5908	% EV =	21,29		% EV =	6,65		
Reproducibi	AV =	ıser variati	on (AV)	/ ==\11/2	(n parts, i			2014) (5)		0/ 41/	00541///	(0)3	
		= 0.0001	(2) - (EV	(111)]	Oper 3	K ₂		00[AV/TV	-	Control of Parish Con-	100[AV/(tol/6)]		
Repeatibility			RR)		_ 3	0,5231	% AV =	3,51		% AV =	1,10		
	GRR =	= (EV ² + A	V ²) ^{1/2}				%GRR=1	100[GRR/	TVI	%GRR=	100[GRR/(tol/6)1	
		= 0,0007					%GRR = 21,58			%GRR= 6,74			
Part Variatio	100000000000000000000000000000000000000	-1					1.00			70	-,		
	PV=	RPART * K			Parts	K ₃	% PV = 1	00[PV/TV	7				
	PV =	= 0,0033			10	0,3146	% PV =	97,64	7.				
Total Variation		7429	96 100 S										
		= (GRR ² +	$PV^2)^{1/2}$				CONCLU	JSION:					
V		= 0,0033											
Number of D							77.39	Gage	system	is satisf	actory.		
		= 1.41(PV) = 6,37938	GKK)					3					
			n is satisfacto	orv.									
- Under 10% erro													
Under 10% erro 10% to 30% erro					ance of appl	ication, cost o	of gage, cost	of repairs, e	tc.				

