APPLICATION SPECIFICATION

MX150 BLADE ISO (M3) TERMINAL

1.0 SCOPE

This specification details the crimping information and common practices of general crimps for the Molex MX150 Blade ISO (M3) Terminal. Please refer to the product drawing for additional part information. The information in this document is for reference and benchmark purposes only. The user is responsible for validating crimp performance based on tooling, equipment and wire that is being used.

All measurements are in millimeters unless specified otherwise.

Terminals shown in this document are generic representations. They are not intended to be an image of any terminal listed in the scope.

2.0 PRODUCT DESCRIPTION

DEFINITION OF TERMS:

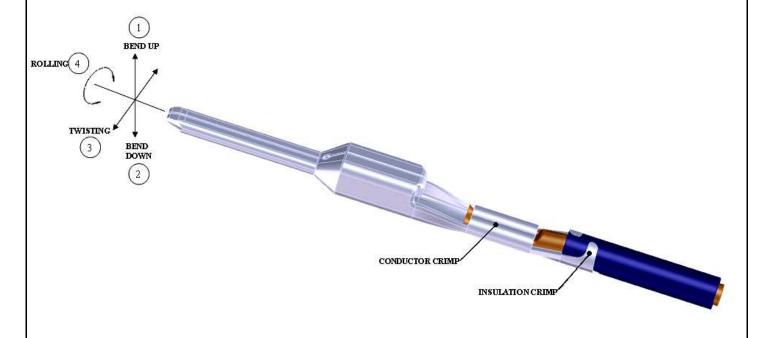
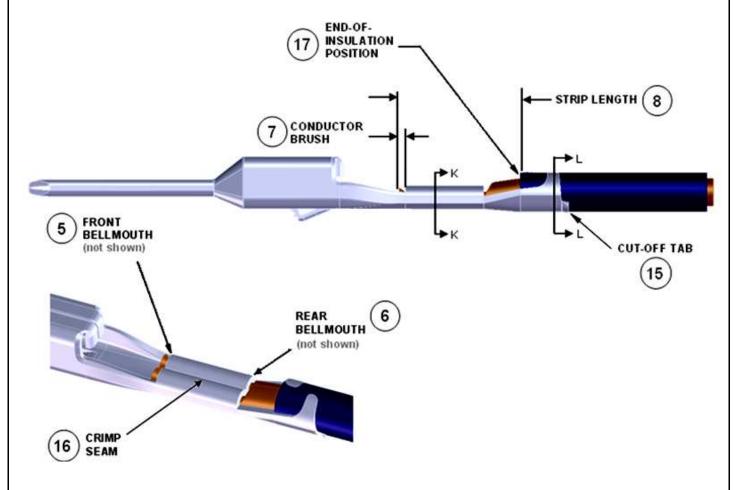



Figure 1

REVISION:	ECR/ECN INFORMATION: EC No: UAU2011-0397	MX150 Blade ISO (M3) Terminal Application Specification		SHEET No.	
A 1	DATE: 11/12/2010	Applic	1 of 14		
DOCUMENT NUMBER:		CREATED / REVISED BY: CHECKED BY: APPROVED		/ED BY:	
AS-34781-001		Kate Ferguson	Ajay Dhir	Dhir Brian Moser	
TEMPLATE FILENAME: CRIMP. SPECISIZE AVV. 1) DOC					

APPLICATION SPECIFICATION

DEFINITIONS OF TERMS (CONT.):

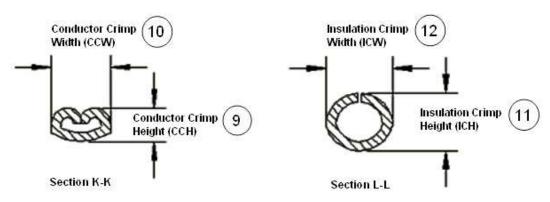
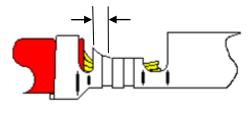
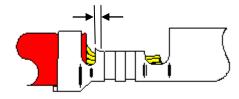


Figure 2


REVISION:	ECR/ECN INFORMATION: EC No: UAU2011-0397	MX150 Blade ISO (M3) Terminal				
A 1	DATE: 11/12/2010	Applic	Application Specification			
DOCUMEN ^T	Γ NUMBER:	CREATED / REVISED BY: CHECKED BY: APPROVED		APPROVED BY:		
AS-34781-001		Kate Ferguson	Ajay Dhir	Brian Moser		
TEMPLATE FILENAME: CRIMP SPECISIZE AVV. 1) DOC						

APPLICATION SPECIFICATION

BELLMOUTH (FLARE) 5 6


The flare that is formed on the edge of the conductor crimp acts as a funnel for the wire strands. This funnel reduces the possibility that a sharp edge on the conductor crimp will cut or nick the wire strands. A rear bellmouth is required on the conductor crimp. A front bellmouth is optional. <u>Caution:</u> Excessively large bellmouths will reduce crimp area and reduce pull forces. See Table 3 for bellmouth specifications.

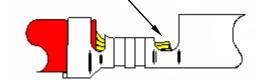
Bellmouth too large Reduced Crimp Area, Lower Pull Forces

Bellmouth per specification


Good Crimp

Figure 3

CONDUCTOR BRUSH 7


The conductor brush is made up of the wire strands that extend past the conductor crimp on the contact side of the terminal. This helps ensure that mechanical compression occurs over the full length of the conductor crimp. The conductor brush should not extend into the contact area or above the conductor crimp height. <u>Caution:</u> Excessive conductor brush that extends above the transition/crimp can cause terminal retention issues inside a plastic cavity and potentially tear matte seals.

Bad Crimp

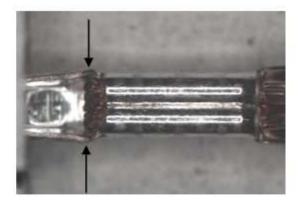
END OF BRUSH FLUSH TO OR BELOW CONDUCTOR CRIMP

Good Crimp

Figure 4

REVISION:	FC No: IIAU2011-0397 MX15		MX150 Blade ISO (M3) Terminal Application Specification				
AI	DATE: 11/12/2010	Application Specification 3					
DOCUMENT NUMBER:		CREATED / REVISED BY:	TED / REVISED BY: CHECKED BY: APPROV		/ED BY:		
AS-34781-001		Kate Ferguson	Ajay Dhir	Brian	Moser		

molex[®]


APPLICATION SPECIFICATION

CRIMP BULGE

Caution needs to be taken with the crimp tooling to prevent a bulge in the transition area during crimping. The transition should generally flow smoothly from the conductor crimp to the terminal box. Bulge must not exceed 2.55mm the maximum width of the terminal as it will impact the terminal to cavity function on the MX150 sealed plastic. See below for an example of crimp bulge.

Good Crimp (No Bulge)

Bad Crimp (Bulge)

Figure 5

CONDUCTOR CRIMP

This is the metallurgical compression of a terminal around the wire's conductor. This connection creates a common electrical path with low resistance and high current carrying capabilities.

CONDUCTOR CRIMP HEIGHT (9)

The conductor crimp height is measured from the top surface of the formed crimp to the bottom most radial surface. Do not include the extrusion points in this measurement. Measuring crimp height is a quick, nondestructive way to help ensure the correct metallurgical compression of a terminal around the wire's conductor and is an excellent attribute for process control. The crimp height specification is typically set as a balance between electrical and mechanical performance over the complete range of wire stranding and coatings, and terminal materials and plating. Although it is possible to optimize a crimp height to individual wire strands and terminal plating, one crimp height specification is normally created. See Section 3.0, Table 2 for crimp height specifications.

CUT-OFF TAB LENGTH (15)

This is the material that protrudes outside the insulation crimp after the terminal is separated from the carrier strip. A cut-off tab that is too long may expose a terminal outside the housing; it may fail electrical spacing requirements or could lead to excessive seal tears in matte sealed connectors. In most situations, a tool is setup to provide a cut-off tab that shall not exceed 0.50mm. See Section 3.0, Table 3 for cut-off tab length specifications. Caution: Burrs on the cut-off tab are not allowed as they have the potential to cut matte seals.

REVISION:	ECR/ECN INFORMATION: EC No: UAU2011-0397 DATE: 11/12/2010	MX150 Blade ISO (M3) Terminal Application Specification			SHEET No. 4 of 14
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVE	ED BY:
AS-34781-001		Kate Ferguson	Ajay Dhir Brian M		oser
TEMPLATE ELLENAME: CRIMP SPECISITE A1/1/1) DOC					

APPLICATION SPECIFICATION

EXTRUSIONS (ANVIL FLASH)

These are the burrs that form on the bottom of the conductor crimp resulting from the clearance between the punch and anvil tooling. If the anvil is worn or the terminal is over-crimped, excessive extrusion can result. An uneven extrusion may also result if the punch and anvil are misaligned, if the feed is misadjusted and if there is insufficient or excessive terminal drag. The cross section should be examined for any resulting cracks in the material. Cracks can undermine the integrity of the crimp and are not allowed under any circumstance. Caution: Anvil flash has the potential to cut matte-seals and should be maintained with specifications.

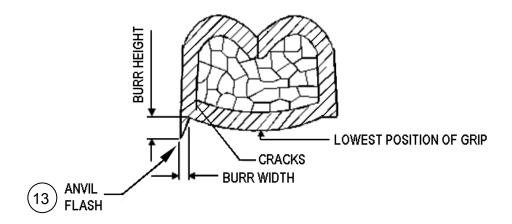


Figure 6

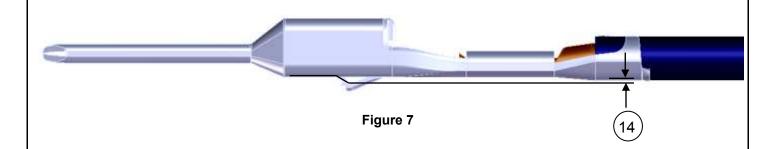
INSULATION CRIMP HEIGHT

Insulation crimp heights are specified in Section 3.0, Table 2. MX150 blade terminal insulation grips are designed to accommodate multiple wire sizes. Although within the terminal range, an insulation grip may not completely surround the wire, an acceptable insulation crimp will still be provided. Evaluate the insulation section by cutting the wire flush with the back of the terminal. Once the optimum setting for the application is determined it is important to document the insulation crimp height. Then, as part of the setup procedure the operator can check the crimp height.

END-OF-INSULATION POSITION

This is the location of the insulation in relation to the transition area between the conductor and insulation crimps. Equal amounts of the conductor strands and insulation needs to be visible in the transition area. The end-ofinsulation position ensures that the insulation is crimped along the full length of the insulation crimp and that no insulation gets crimped under the conductor crimp. The end-of-insulation position is set by the wire stop and strip length for bench applications. For automatic wire processing applications the end-of-insulation position is set by the in/out press adjustment.

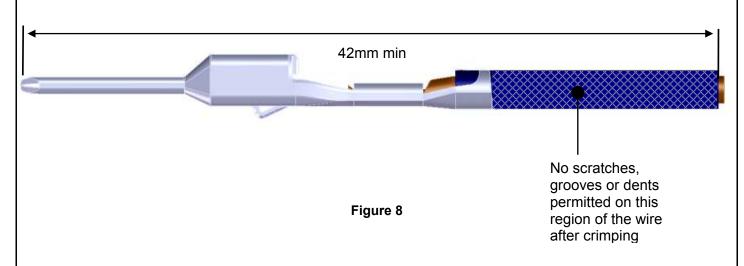
A1	ECR/ECN INFORMATION: EC No: UAU2011-0397 DATE: 11/12/2010	MX150 Blade ISO (M3) Terminal Application Specification			
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:	
AS-34781-001		Kate Ferguson	Ajay Dhir	Brian Moser	
	TEMPLATE FILENAME: CRIMP_SPEC[SIZE_A](V.1).DOC				


APPLICATION SPECIFICATION

STRIP LENGTH 8

The strip length is the length of the exposed conductor strands after the insulation is removed. The strip length in conjunction with the end-of-insulation position will affect the brush length extension past the conductor crimp.

GRIP STEPS 14


The designed offset between the conductor grip and the insulation grip. The grip step should not be altered during the crimping operation. See Section 3.0, Table 3 for grip step specification. <u>Caution:</u> Steps are designed to ensure seal performance in MX150 connection systems.

WIRE CONDITION AFTER CRIMP

DEVICION. FOR/ECN INFORMATION. TITLE.

The wire, after crimping, should not have any scratches, grooves or dents. Such imperfections act as a leak path at the junction between the wire and the matte seal. At a minimum, check the condition of the wire on a sample length of 42mm as shown in Figure 8.

A1	EC No: UAU2011-0397 DATE: 11/12/2010	MX150 B Applic	6 of 14		
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:	
AS-34781-001		Kate Ferguson Ajay Dhir Bria		Brian I	Moser

CLIEFT No

APPLICATION SPECIFICATION

3.0 PRODUCT SPECIFICATIONS

TABLE 1

Terminal	Order No.		Insulation	(8)	
Right Payoff "B" Wind	Left Payoff "D" Wind	Wire Range	Diameter Range (mm)	Strip Length (mm)	
34781-0004	34781-1004	0.35 - 0.50 mm ²	1.2 – 1.70	4.70 – 5.60	

TABLE 2

Terminal Order No.				Conductor Crimp		Insulation Crimp	
Right Payoff "B" Wind	Left Payoff "D" Wind	Wire Size	Insulation Diameter Range (mm)	CCH (mm)	CCW (mm)	ICH (mm)	ICW (mm)
					±0.10	±0.10	±0.10
34781-0004	34781-1004	ISO 0.35mm	1.20-1.40	1.05 ± 0.03	1.60	1.75	2.00
34701-0004	34701-1004	ISO 0.50mm	1.40-1.70	1.10 ±0.05	1.00	1.90	2.00

Crimp heights/widths shown above are applicable for punch/anvil tooling shown in Figures 12 – 16.

Customers are required to complete their own validation testing if tooling and/or wire is different than what is shown in this specification.

Terminal crimps were validated to following specifications: USCAR-21 Rev. 2 Oct. 2008

Wires are in accordance with following specifications: ISO 6722 and ES-AU5T-1A348-AA
Thin Wall symmetrical conductor

REVISION:	ECR/ECN INFORMATION:	TITLE:	lada ISO (M2) Tari	minal	SHEET No.
A 4	EC No: UAU2011-0397		MX150 Blade ISO (M3) Terminal Application Specification		7 - : 4 4
A 1	DATE: 11/12/2010	Аррііс	7 of 14		
DOCUMEN	Γ NUMBER:	CREATED / REVISED BY: CHECKED BY: APPROVE		/ED BY:	
AS-34781-001		Kate Ferguson Ajay Dhir Brian		Brian I	Moser
TEMPLATE FILENAME: CRIMP SPEC[SIZE A](V.1).DOC					

APPLICATION SPECIFICATION

TABLE 3

_			4 =	
<u> </u>	nac	^ITI^	2ti	nne.
J	ner	,,,,,	аш	ons
_				

Balloon #	Description	Requirement
1	Bend Up	1.5° REF
2	Bend Down	1.5° REF
3	Twisting	3° MAX
4	Rolling	3° MAX
5	Front Bell Mouth	Not Required
6	Rear Bell Mouth	0.30 – 0.70mm
7	Conductor Brush	0.40MAX Not to extend above conductor crimp height
8	Wire Strip Length	(4.70 – 5.60)
9	Conductor Crimp Height	See Table 2
10	Conductor Crimp Width	See Table 2
11	Insulation Crimp Height	See Table 2
12	Insulation Crimp Width	See Table 2
13	Conductor Anvil Flash	Burr Height = Does not exceed the lowest position on the grip
		Burr Width = 0.1 MAX
14	Insulation Grip Step	0.15 ± 0.30mm
15	Cut-off Tab Length	0.50 MAX No burrs
16	Crimp Seam	Seam shall not open and no wire is allowed out of the crimping area

INSULATION GRIP STEP (14)

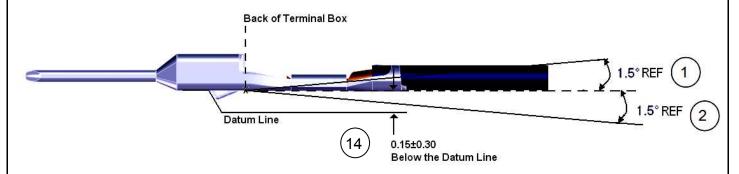
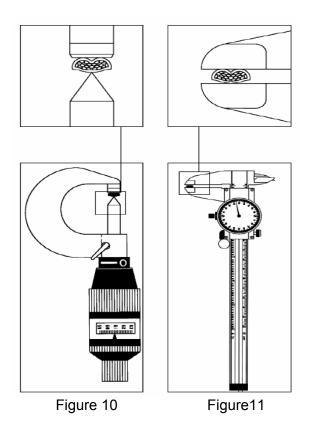


Figure 9

A1	ECR/ECN INFORMATION: EC No: UAU2011-0397 DATE: 11/12/2010	MX150 Blade ISO (M3) Terminal Application Specification			8 of 14
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROV	ED BY:
AS-34781-001		Kate Ferguson	Ajay Dhir	Brian Moser	
TEMPLATE FILENAME: CRIMP_SPEC[SIZE_A](V.1).DOC					

APPLICATION SPECIFICATION

4.0 REFERENCE DOCUMENTS

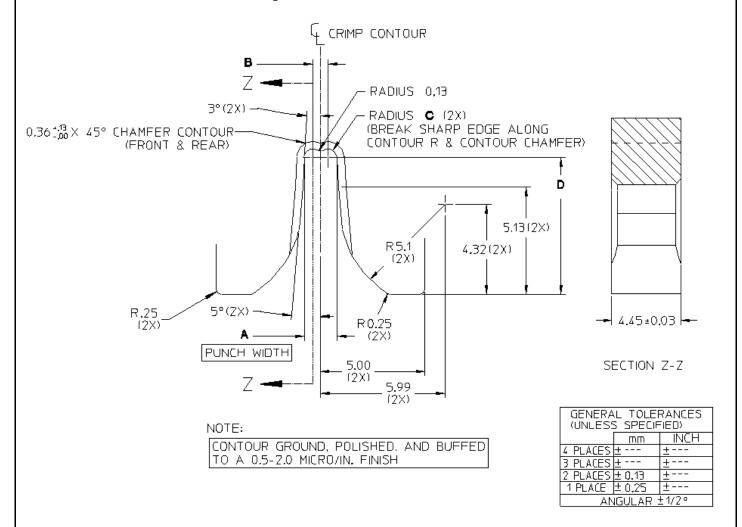

Reference documentation for general practices are located on the website per the below links:

- 1. Molex Quality Crimping Handbook http://www.molex.com/images/products/apptool/qual crimp.pdf
- 2. Molex-Recognizing Good Crimps http://www.molex.com, search for Application Tooling

5.0 PROCEDURE

5.1 GENERAL MEASUREMENT AND EVALUATION REQUIREMENTS Crimp Height Measurement

- 1. Complete tool set-up procedure.
- 2. Crimp a minimum of 5 samples.
- 3. Place the flat blade of the crimp micrometer (Figure 10) across the center of the dual radii of the conductor crimp. Do not take the measurement near the conductor bell mouth.
- 4. Rotate the micrometer dial until the point contacts the bottom most radial surface. If using a caliper, be certain not to measure the extrusion points (anvil flash) of the crimp.
- 5. To check for extrusion (anvil flash) use the caliper (Figure 11) to measure the crimp height. If the caliper measurement is greater than the crimp micrometer measurement the extrusion is not acceptable. CAUTION: Excessive extrusion can cause connector water leak.

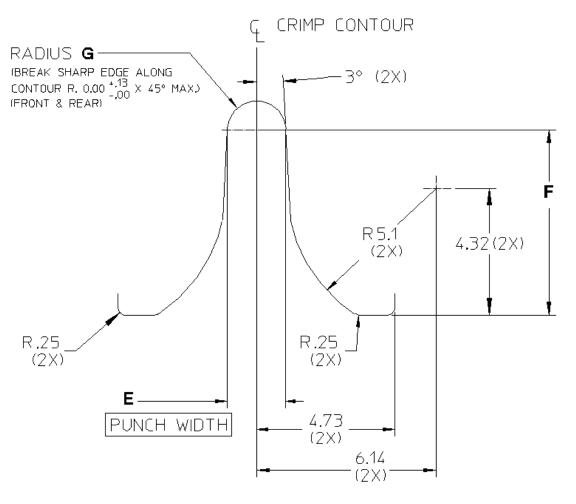

A1	ECR/ECN INFORMATION: EC No: UAU2011-0397 DATE: 11/12/2010	MX150 BI	ade ISO (M3) Terr ation Specification	
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:
AS-34781-001		Kate Ferguson	Ajay Dhir	Brian Moser
TEMPLATE FILENAME: CRIMP_SPEC[SIZE_A](V.1).DOC				

APPLICATION SPECIFICATION

6.0 CRIMP TOOLING GEOMETRY

The crimp tooling information shown below is based on the tooling that Molex used to perform validation testing to establish recommended crimp height and widths. The user is responsible for validating crimp performance based on tooling, equipment and wire that is being used.

Figure 12: CONDUCTOR PUNCH



Terminal Order No.	A +0.005/-0.00	B ±0.005	C ± 0.005	D ±0.005
34781-0004	1.56	0.72	0.42	6.57
34781-1004	1.50	0.72	0.42	0.57

A1	ECR/ECN INFORMATION: EC No: UAU2011-0397 DATE: 11/12/2010	MX150 B Applic	10 of 14		
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPRO\	/ED BY:
AS-34781-001		Kate Ferguson	Ajay Dhir	Brian I	Moser
TEMPLATE FILENAME: CRIMP_SPEC[SIZE_A](V.			SSIZE_A](V.1).DOC		

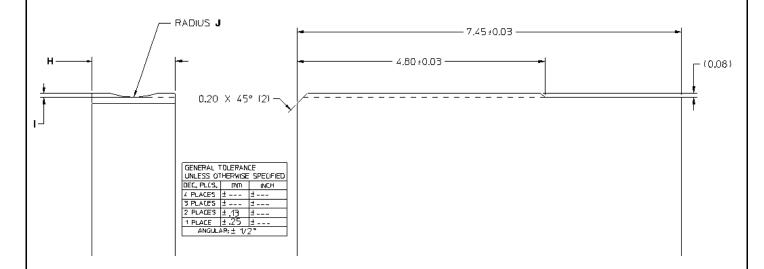
APPLICATION SPECIFICATION

Figure 13: INSULATION PUNCH

NOTE:

CONTOUR GROUND, POLISHED AND BUFFED TO A 0,5-2,0 MICRO/IN, FINISH

PUNCH THICKNESS: 3.75±0.03


GENERAL TOLERANCE UNLESS OTHERWISE SPECIFIED				
DEC. PLCS. MM INCH				
4 PLACES	±	±		
3 PLACES	±	±		
2 PLACES	± 0,13	±		
1 PLACE	± 0.25	±		
ANGULAR: ± 1/2°				

Term	inal Order No.	E ±0.005	F ±0.03	G ±0.005
3	4781-0004	2.00	6 31	1.00
3	34781-1004	2.00	0.51	1.00

REVISION:	ECR/ECN INFORMATION:	MX150 Blade ISO (M3) Terminal Application Specification			SHEET No.
A1	EC No: UAU2011-0397				11 of 14
Ai	DATE: 11/12/2010	Applic	110114		
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPRO\	/ED BY:
AS-34781-001		Kate Ferguson	Ajay Dhir	Brian I	Moser

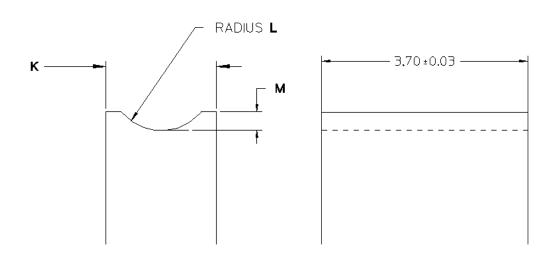
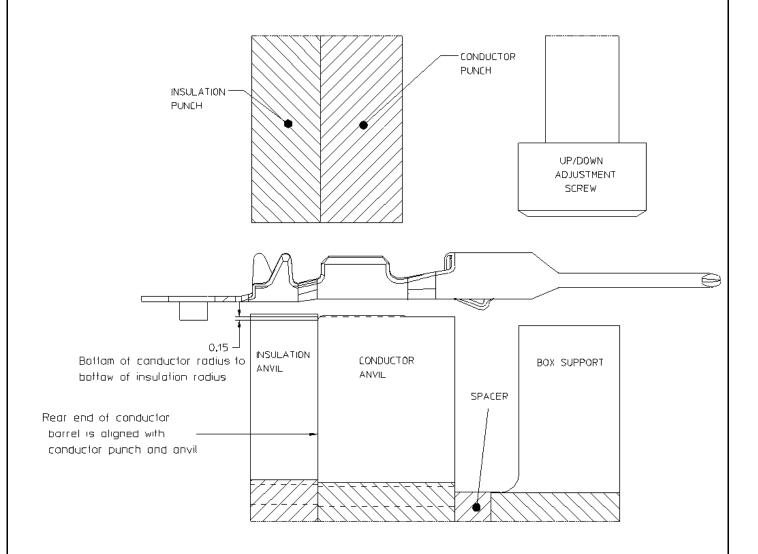

APPLICATION SPECIFICATION

Figure 14: CONDUCTOR ANVIL

Terminal Order No.	H +0/-0.005	l ±0.005	J ±0.005
34781-0004	1.61	0.08	1.44
34781-1004	1.01	0.08	1.44

Figure 15: INSULATION ANVIL



Terminal Order No.	K ±0.005	L ±0.005	M ±0.005
34781-0004	1.98	0.95	0.33
34781-1004	1.90	0.95	0.33

REVISION:	ECR/ECN INFORMATION: EC No: UAU2011-0397 DATE: 11/12/2010	MX150 Blade ISO (M3) Terminal Application Specification		
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	APPROVED BY:
AS-34781-001		Kate Ferguson	Ajay Dhir	Brian Moser
TEMPLATE FILENAME: CRIMP_SPEC[SIZE_A](V.1).DOC				

APPLICATION SPECIFICATION

Figure 16: TERMINAL POSITIONING WITH WIRE PRESS AND BOX SUPPORT TOOLING

The box support helps to control straightness of crimped lead during crimping.

A1	ECR/ECN INFORMATION: EC No: UAU2011-0397 DATE: 11/12/2010	MX150 Blade ISO (M3) Terminal Application Specification		13 of 14	
DOCUMENT NUMBER:		CREATED / REVISED BY:	CHECKED BY:	<u>APPROV</u>	<u>'ED BY:</u>
AS-34781-001		Kate Ferguson	Ajay Dhir	Brian I	Moser

APPLICATION SPECIFICATION

7.0 APPLICATOR TOOLING

Applicator tooling for the MX150 blade terminal can be obtained directly from Molex. See table below for description and product numbers.

SUPPLIER APPLICATOR TOOLING TABLE	
Description	Molex Applicator
FineAdjust™ Applicator for MX150 Blade ISO (M3)Terminals 0.35mm² and 0.50mm²	TBD

FineAdjust™ Applicator tooling requires the use of left payoff ("D" Wind) parts.

REVISION:	ECR/ECN INFORMATION: EC No: UAU2011-0397 DATE: 11/12/2010	MX150 Blade ISO (M3) Terminal Application Specification		14 of 14
DOCUMENT	NUMBER: 6-34781-001	CREATED / REVISED BY: CHECKED BY: APPROVE Kate Ferguson Ajay Dhir Brian Mo		<u></u>
TEMPLATE FILENAME: CRIMP SPECISIZE AVV 1) DOC				